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Positioning of EC

● EC is part of computer science
● EC is not part of life sciences/biology
● Biology delivered inspiration and terminology
● EC can be applied in biological research
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EVOLUTION

Environment

Individual

Fitness

The Main Evolutionary Computing 
Metaphor

PROBLEM SOLVING

Problem

Candidate Solution

Quality

Quality → chance for seeding new solutions

Fitness → chances for survival and reproduction
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Brief History 1: the ancestors

• 1948, Turing:
proposes “genetical or evolutionary search”

• 1962, Bremermann
optimization through evolution and recombination 

• 1964, Rechenberg 
introduces evolution strategies 

• 1965, L. Fogel, Owens and Walsh 
introduce evolutionary programming

• 1975, Holland 
introduces genetic algorithms

• 1992, Koza
introduces genetic programming
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Brief History 2: The rise of EC

• 1985: first international conference (ICGA)

• 1990: first international conference in Europe (PPSN)

• 1993: first scientific EC journal (MIT Press)

• 1997: launch of European EC Research Network EvoNet
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EC in the early 21st Century

• 3 major EC conferences, about 10 small related ones

• 3 scientific core EC journals

• 750-1000 papers published in 2003 (estimate)

• EvoNet has over 150 member institutes

• uncountable (meaning: many) applications

• uncountable (meaning: ?) consultancy and R&D firms



Institut P', Poitiers, France – 04/06/2013

Darwinian Evolution 1: 
Survival of the fittest

● All environments have finite resources

(i.e., can only support a limited number of individuals)

● Lifeforms have basic instinct/ life-cycles geared towards 

reproduction

● Therefore some kind of selection is inevitable

● Those individuals that compete for the resources most 

effectively have increased chance of reproduction



Institut P', Poitiers, France – 04/06/2013

Darwinian Evolution 2:
Diversity drives change

● Phenotypic traits:
– Behavior / physical differences that affect response to 

environment
– Partly determined by inheritance, partly by factors during 

development
– Unique to each individual, partly as a result of random 

changes
● If phenotypic traits:

– Lead to higher chances of reproduction
– Can be inherited

    then they will tend to increase in subsequent 
generations, 

● leading to new combinations of traits …  



Institut P', Poitiers, France – 04/06/2013

Darwinian Evolution:Summary

● Population consists of diverse set of individuals
● Combinations of traits that are better adapted tend to 

increase representation in population

    Individuals are “units of selection”
● Variations occur through random changes yielding 

constant source of diversity, coupled with selection 
means that: 

Population is the “unit of evolution”
● Note the absence of “guiding force”
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Adaptive landscape metaphor (Wright, 1932)

• Can  envisage population with n traits as existing in a 
n+1-dimensional space (landscape) with height 
corresponding to fitness

• Each different individual (phenotype) represents a 
single point on the landscape

• Population is therefore a “cloud” of points, moving  on 
the landscape over time as it evolves - adaptation
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Example with two traits
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Adaptive landscape metaphor (cont’d)

•Selection “pushes” population up the landscape

•Genetic drift: 
• random variations in feature distribution 
     (+ or -) arising from sampling error
• can cause the population “melt down” hills, thus 
crossing valleys and leaving local optima
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Natural Genetics

● The information required to build a living organism is 
coded in the DNA of that organism

● Genotype (DNA inside) determines phenotype
● Genes     phenotypic traits is a complex mapping

– One gene may affect many traits (pleiotropy)
– Many genes may affect one trait (polygeny)

● Small changes in the genotype lead to small changes 
in the organism (e.g., height, hair colour)
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Genes and the Genome

● Genes are encoded in strands of DNA called 
chromosomes

● In most cells, there are two copies of each 
chromosome (diploidy)

● The complete genetic material in an individual’s 
genotype is called the Genome

● Within a species, most of the genetic material is the 
same
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Example: Homo Sapiens

● Human DNA is organized into chromosomes
● Human body cells contains 23 pairs of chromosomes 

which together define the physical attributes of the 
individual:
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Reproductive Cells

● Gametes (sperm and egg cells) contain 23 individual 
chromosomes rather than 23 pairs

● Cells with only one copy of each chromosome are 
called Haploid

● Gametes are formed by a  special form of cell splitting 
called meiosis

● During meiosis the pairs of chromosome undergo an 
operation called crossing-over
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Crossing-over during meiosis

 Chromosome pairs align and duplicate
 Inner pairs link at a centromere  and swap parts of 
themselves

 Outcome is one copy of maternal/paternal chromo-
some plus two entirely new combinations
 After crossing-over one of each pair goes into each 
gamete
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Fertilisation

Sperm cell from Father Egg cell from Mother

New person cell (zygote)
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After fertilisation

● New zygote rapidly divides etc creating many cells all 
with the same genetic contents

● Although all cells contain the same genes, depending 
on, for example where they are in the organism, they 
will behave differently

● This process of differential behavior during 
development is called ontogenesis

● All of this uses, and is controlled by, the same 
mechanism for decoding the genes in DNA
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Genetic code 

• All proteins in life on earth are composed of sequences 
built from 20 different amino acids

• DNA is built from four nucleotides in a double helix 
spiral: purines A,G; pyrimidines T,C

• Triplets of these form codons, each of which codes for 
a specific amino acid

• Much redundancy:
• purines complement pyrimidines
• the DNA contains much rubbish
• 43=64 codons code for 20 amino acids
• genetic code = the mapping from codons to amino acids

• For all natural life on earth, the genetic code is the 
same !



Institut P', Poitiers, France – 04/06/2013

A central claim in molecular genetics: only one way flow

Genotype                Phenotype

Genotype                Phenotype 

Lamarckism (saying that acquired features can be inher-
ited) is thus wrong!

Transcription, translation
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Mutation

● Occasionally some of the genetic material changes 
very slightly during this process (replication error)

● This means that the child might have genetic material 
information not inherited from either parent

● This can be
– catastrophic: offspring in not viable (most likely)
– neutral: new feature not influences fitness 
– advantageous: strong new feature occurs

● Redundancy in the genetic code forms a good way of 
error checking
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Motivations for EC: 1

 Nature has always served as a source of inspiration 
for engineers and scientists

 The best problem solver known in nature is:
– the (human) brain that created “the wheel, New York, 

wars and so on” (after Douglas Adams’ Hitch-Hikers 
Guide)

– the evolution mechanism that created the human brain 
(after Darwin’s Origin of Species)

 Answer 1  neurocomputing
 Answer 2  evolutionary computing
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Motivations for EC: 2

• Developing, analyzing, applying problem solving 
methods a.k.a. algorithms is a central theme in 
mathematics and computer science

• Time for thorough problem analysis decreases

• Complexity of problems to be solved increases

• Consequence: 
Robust problem solving technology needed
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Problem  type 1 : Optimization 

● We have a model of our system and seek inputs that 
give us a specified goal

 e.g. 
– time tables for university, call center, or hospital
– design specifications, etc etc
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Optimization example: Satellite structure

Optimised satellite designs for 
NASA to maximize vibration 
isolation

Evolving: design structures

Fitness: vibration resistance

Evolutionary “creativity” 
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Problem types 2: Modelling

● We have corresponding sets of inputs & outputs and 
seek model that delivers correct output for every 
known input

•  Evolutionary machine learning
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Modelling example: loan applicant creditibility

British bank evolved cred-
itability model to predict 
loan paying behavior of new 
applicants 

Evolving: prediction models

Fitness: model accuracy on 
historical data
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Genetic Algorithms 
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GA Quick Overview

● Developed: USA in the 1970’s
● Early names: J. Holland, K. DeJong, D. Goldberg
● Typically applied to:

–  discrete optimization
● Attributed features:

– not too fast
– good heuristic for combinatorial problems

● Special Features:
– Traditionally emphasizes combining information from good 

parents (crossover)
– many variants, e.g., reproduction models, operators
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Genetic algorithms

● Holland’s original GA is now known as the 
simple genetic algorithm (SGA)

● Other GAs use different:
– Representations
– Mutations
– Crossovers
– Selection mechanisms
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SGA technical summary tableau

Representation Binary strings

Recombination N-point or uniform

Mutation Bitwise bit-flipping with fixed 
probability

Parent selection Fitness-Proportionate

Survivor selection All children replace parents

Speciality Emphasis on crossover
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Genotype space = {0,1}LPhenotype space

Encoding 
(representation)

Decoding
(inverse representation)

011101001

010001001

10010010

10010001

Representation
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SGA reproduction cycle

1. Select parents for the mating pool 

(size of mating pool = population size)

2. Shuffle the mating pool

3. For each consecutive pair apply crossover with 
probability pc , otherwise copy parents

4. For each offspring apply mutation (bit-flip with prob-
ability pm independently for each bit)

5. Replace the whole population with the resulting off-
spring
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SGA operators: 1-point crossover

● Choose a random point on the two parents
● Split parents at this crossover point
● Create children by exchanging tails
● Pc typically in range (0.6, 0.9)
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SGA operators: mutation

● Alter each gene independently with a probability pm 

● pm is called the mutation rate
– Typically between 1/pop_size and 1/ 

chromosome_length



Institut P', Poitiers, France – 04/06/2013

● Main idea: better individuals get higher chance
– Chances proportional to fitness
– Implementation: roulette wheel technique

● Assign to each individual a part of 
the roulette wheel

●  Spin the wheel n times to select n 
individuals

SGA operators: Selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%
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An example after Goldberg ‘89 (1)

● Simple problem: max x2 over {0,1,…,31}
● GA approach:

– Representation: binary code, e.g. 01101 ↔ 13
– Population size: 4
– 1-point xover, bitwise mutation 
– Roulette wheel selection
– Random initialisation

● We show one generational cycle done by hand 
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x2 example: selection
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X2 example: crossover
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X2 example: mutation
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The simple GA

● Has been subject of many (early) studies
– still often used as benchmark for novel GAs

● Shows many shortcomings, e.g.
– Representation is too restrictive
– Mutation & crossovers only applicable for bit-string & 

integer representations
– Selection mechanism sensitive for converging populations 

with close fitness values
– Generational population model (step 5 in SGA repr. cycle) 

can be improved with explicit survivor selection
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Alternative Crossover Operators

● Performance with 1 Point Crossover depends on the 
order that variables occur in the representation
– more likely to keep together genes that are near each 

other

– Can never keep together genes from opposite ends of 
string

– This is known as Positional Bias

– Can be exploited if we know about the structure of our 
problem, but this is not usually the case
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n-point crossover

● Choose n random crossover points
● Split along those points
● Glue parts, alternating between parents
● Generalisation of 1 point (still some positional bias)



Institut P', Poitiers, France – 04/06/2013

Uniform crossover

● Assign 'heads' to one parent, 'tails' to the other
● Flip a coin for each gene of the first child
● Make an inverse copy of the gene for the second child
● Inheritance is independent of position
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Crossover OR mutation?

● Decade long debate: which one is better / necessary / 
main-background 

● Answer (at least, rather wide agreement):
– it depends on the problem, but
– in general, it is good to have both
– both have a different role
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Exploration: Discovering promising areas in the search 

space, i.e. gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using 

information

There is co-operation AND competition between them

 Crossover is explorative, it makes a big jump to an area 

somewhere “in between” two (parent) areas

 Mutation is exploitative, it creates random small 

diversions, thereby staying near (in the area of ) the parent

Crossover OR mutation? (cont’d)
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● Only crossover can combine information from two 

parents

● Only mutation can introduce new information 

(alleles)

● Crossover does not change the allele frequencies of 

the population (thought experiment: 50% 0’s on first 

bit in the population, 50% after performing n 

crossovers)

● To hit the optimum you often need a ‘lucky’ mutation

Crossover OR mutation? (cont’d)
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Other representations

● Gray coding of integers (still binary chromosomes)
– Gray coding is a mapping that means that small changes in 

the genotype cause small changes in the phenotype (unlike 

binary coding). “Smoother” genotype-phenotype mapping 

makes life easier for the GA

Nowadays it is generally accepted that it is better to 

encode numerical variables directly as

● Integers

● Floating point variables
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Permutation Representations

 Ordering/sequencing problems form a special type
 Task is (or can be solved by) arranging some objects in 

a certain order 
– Example: sort algorithm: important thing is which elements 

occur before others (order)
– Example: Travelling Salesman Problem (TSP) : important thing 

is which elements occur next to each other (adjacency)

 These problems are generally expressed as a 
permutation:
– if there are n variables then the representation is as a list of n 

integers, each of which occurs exactly once
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Permutation representation: TSP example

● Problem:
• Given n cities
• Find a complete tour with 

minimal length
● Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one 

permutation (e.g. for n =4 
[1,2,3,4], [3,4,2,1] are OK)

● Search space is BIG: 

for 30 cities there are 30! ≈ 1032 
possible tours
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Mutation operators for permutations

● Normal mutation operators lead to inadmissible 
solutions
– e.g. bit-wise mutation : let gene i  have value j
– changing to some other value k  would mean that k 

occurred twice and j no longer occurred 
● Therefore must change at least two values
● Mutation parameter now reflects the probability 

that some operator is applied once to the whole 
string, rather than individually in each position
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Insert Mutation for permutations

● Pick two allele values at random
● Move the second to follow the first,  shifting the 

rest along to accommodate
● Note that this preserves most of the order and the 

adjacency information
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Swap mutation for permutations

● Pick two alleles at random and swap their 
positions

● Preserves most of adjacency information (4 links 
broken), disrupts order more
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Inversion mutation for permutations

● Pick two alleles at random and then invert the 
substring between them.

● Preserves most adjacency information (only 
breaks two links) but disruptive of order 
information
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● “Normal” crossover operators will often lead to 
inadmissible solutions

● Many specialised operators have been devised 
which focus on  combining order or adjacency 
information from the two parents

Crossover operators for permutations

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5
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Order 1 crossover

● Idea is to preserve relative order that elements occur
● Informal procedure:

1. Choose an arbitrary part from the first parent

2. Copy this part to the first child

3. Copy the numbers that are not in the first part, to the first 
child:

● starting right from cut point of the copied part, 
● using the order of the second parent 
● and wrapping around at the end

4. Analogous for the second child, with parent roles 
reversed
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Order 1 crossover example

● Copy randomly selected set from first parent

● Copy rest from second parent in order 1,9,3,8,2



Institut P', Poitiers, France – 04/06/2013

Cycle crossover

Basic idea: 

Each allele comes from one parent together with its position.

Informal procedure:
1. Make a cycle of alleles from P1 in the following way. 

(a) Start with the first allele of P1. 

(b) Look at the allele at the same position in P2.

(c) Go to the position with the same allele in P1. 

(d) Add this allele to the cycle.

(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions 
they have in the first parent.

3. Take next cycle from second parent
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Cycle crossover example

● Step 1: identify cycles

● Step 2: copy alternate cycles into offspring
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Population Models

● SGA uses a Generational model:
– each individual survives for exactly one generation
– the entire set of  parents is replaced by the offspring

● At the other end of the scale are Steady-State 
models:
–  one offspring is generated per generation,
–  one member of population replaced,

● Generation Gap 
–  the proportion of the population replaced
– 1.0 for GGA,  1/pop_size for SSGA
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Fitness Based Competition

● Selection can occur in two places:
– Selection from current generation to take part in mating 

(parent selection) 
– Selection from parents + offspring to go into next 

generation (survivor selection)
● Selection operators work on whole individual

– i.e. they are representation-independent
● Distinction between selection

– operators: define selection probabilities  
– algorithms: define how probabilities are implemented  
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Implementation example: SGA

● Expected number of copies of an individual i  

  E( ni ) = µ • f(i)/ � f� 
(µ = pop.size, f(i) = fitness of i, �f� avg. fitness in pop.)
● Roulette wheel algorithm:

– Given a probability distribution, spin a 1-armed wheel n 
times to make n selections

– No guarantees on actual value of ni 

● Baker’s SUS algorithm:
– n evenly spaced arms on wheel and spin once

– Guarantees  floor(E( ni ) ) ≤ ni ≤ ceil(E( ni ) )
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● Problems include
– One highly fit member can rapidly take over if rest of 

population is much less fit: Premature Convergence
– At end of runs when fitnesses are similar, lose selection 

pressure 
● Scaling can fix last two problems

– Windowing: f’(i) = f(i) - β t  
● where β is worst fitness in this (last n) generations

– Sigma Scaling: f’(i) = max( f(i) – (� f � - c • σf ), 0.0)
● where c is a constant, usually 2.0

Fitness-Proportionate Selection
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Tournament Selection

● All methods above rely on global population 
statistics
– Could be a bottleneck esp. on parallel machines
– Relies on presence of external fitness function which 

might not exist: e.g. evolving game players
●  Informal Procedure:

– Pick k members  at random then select the best of 
these

– Repeat to select more individuals
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Tournament Selection 2

● Probability of selecting i  will depend on:
– Rank of i
– Size of sample k 

●  higher k increases selection pressure
– Whether contestants are picked with replacement

● Picking without replacement increases selection pressure

– Whether fittest contestant always wins (deterministic) or 
this happens with probability p
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Two Special Cases

● Elitism
– Widely used in both population models (GGA, SSGA)
– Always keep at least one copy of the fittest solution so 

far
● GENITOR: a.k.a. “delete-worst”

– From Whitley’s original Steady-State algorithm
– Rapid takeover : use with large populations or “no 

duplicates” policy
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Genetic Programming
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GP quick overview

● Developed: USA in the 1990’s
● Early names: J. Koza
● Typically applied to:

– machine learning tasks (prediction, classification…)
● Attributed features:

– Competes (and most of the time beats) with neural nets and 
alike (SVM, decision trees...)

– needs huge populations (thousands)
– Slow, but acceptable on modern machines (couple of hours to 

couple of weeks for complex  real life problems)
● Special:

– non-linear chromosomes: trees, graphs
– mutation possible but not necessary (disputed!)
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GP technical summary tableau

Representation Tree structures

Recombination Exchange of subtrees

Mutation Random change in trees

Parent selection Fitness proportional

Survivor selection Generational replacement
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Introductory example: 
credit scoring

● Bank wants to distinguish good from bad loan 
applicants

● Model needed that matches historical data

ID No of chil-
dren

Salary Marital 
status

OK?

ID-1 2 45000 Married 0

ID-2 0 30000 Single 1

ID-3 1 40000 Divorced 1

…
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Introductory example: 
credit scoring

● A possible model: 
IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

● In general: 
IF formula THEN good ELSE bad

● Only unknown is the right formula, hence
● Our search space (phenotypes) is the set of formulas
● Natural fitness of a formula: percentage of well 

classified cases of the model it stands for
● Natural representation of formulas (genotypes) is: 

parse trees
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Introductory example: 
credit scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

can be represented by the following tree

AND

S2NOC 80000

>=
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Tree based representation

● Trees are a universal form, e.g. consider 
● Arithmetic formula

● Logical formula

● Program








+
−++⋅

15
)3(2

y
xπ

(x ∧ true) → (( x ∨ y ) ∨ (z ↔ (x ∧ y)))

i =1;
while (i < 20)
{

i = i +1
} 
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Tree based representation








+
−++⋅

15
)3(2

y
xπ
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Tree based representation

(x ∧ true) → (( x ∨ y ) ∨ (z ↔ (x ∧ y)))
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Tree based representation

i =1;
while (i < 20)
{

i = i +1
} 
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Tree based representation

● In GA, ES, EP chromosomes are linear structures 
(bit strings, integer string, real-valued vectors, 
permutations)

● Tree shaped chromosomes are non-linear 
structures

● In GA, ES, EP the size of the chromosomes is 
fixed

● Trees in GP may vary in depth and width 
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Tree based representation

 Symbolic expressions can be defined by 
– Terminal set T
– Function set F (with the arities of function symbols)

 Adopting the following general recursive definition:
1. Every t ∈ T is a correct expression
2. f(e1, …, en) is a correct expression if f ∈ F, arity(f)=n and e1, 

…, en are correct expressions 

3. There are no other forms of correct expressions
 In general, expressions in GP are not typed (closure 

property: any f ∈ F can take any g ∈ F as argument)
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Offspring creation scheme

Compare 
● GA scheme using crossover AND mutation 

sequentially (be it probabilistically)
● GP scheme using crossover OR mutation (chosen 

probabilistically)
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GP flowchartGA flowchart
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Mutation

● Most common mutation: replace randomly chosen 
subtree by randomly generated tree
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Mutation cont’d

● Mutation has two parameters:
– Probability pm to choose mutation vs. recombination

– Probability to chose an internal point as the root of the 
subtree to be replaced

● Remarkably pm is advised to be 0 (Koza’92) or 
very small, like 0.05 (Banzhaf et al. ’98)

● The size of the child can exceed the size of the 
parent
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Recombination

● Most common recombination: exchange two 
randomly chosen subtrees among the parents

● Recombination has two parameters:
– Probability pc to choose recombination vs. mutation

– Probability to chose an internal point within each parent 
as crossover point

● The size of offspring can exceed that of the 
parents
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Child 2

Parent 1 Parent 2

Child 1
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Selection 

● Parent selection typically fitness proportionate
● Over-selection in very large populations

– rank population by fitness and divide it into two groups: 
– group 1: best x% of population, group 2 other (100-x)%
– 80% of selection operations chooses from group 1, 20% from group 2
– for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%

● Survivor selection: 
– Typical: generational scheme (thus none)
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Initialisation

● Maximum initial depth of trees Dmax is set

● Full method (each branch has depth = Dmax):
– nodes at depth d < Dmax randomly chosen from function set F

– nodes at depth d = Dmax randomly chosen from terminal set T

● Grow method (each branch has depth ≤ Dmax):
– nodes at depth d < Dmax randomly chosen from F ∪ T

– nodes at depth d = Dmax randomly chosen from T

● Common GP initialisation: ramped half-and-half, 
where grow & full method each deliver half of initial 
population 
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Bloat

● Bloat = “survival of the fattest”, i.e., the tree sizes 
in the population are increasing over time

● Ongoing research and debate about the reasons 
● Needs countermeasures, e.g.

– Prohibiting variation operators that would deliver “too 
big” children

– Parsimony pressure: penalty for being oversized
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Problems involving “physical” 
environments

● Trees for data fitting vs. trees (programs) that are 
“really” executable

● Execution can change the environment  the 
calculation of fitness

● Example: robot controller
● Fitness calculations mostly by simulation, ranging from 

expensive to extremely expensive (in time)
● But evolved controllers are often to very good 
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Example application: 
symbolic regression 

● Given some points in R2, (x1, y1), … , (xn, yn)

● Find function f(x) s.t. ∀i = 1, …, n : f(xi) = yi 
● Possible GP solution:

– Representation by F = {+, -, /, sin, cos}, T = R ∪ {x}
– Fitness is the error
– All operators standard
–  pop.size = 1000, ramped half-half initialisation
– Termination: n “hits” or 50 generations reached (where “hit” is 

if | f(xi) – yi | < 0.0001) 

err( f )=∑
i=1

n

( f ( xi )− yi )
2
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Genetic Programming for Classification

● Genetic Programming can perform classification:

– Use only binary trees: only works with very few problems

– Use threshold on a regression problem
● How to set the threshold?
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Genetic Programming for Classification

● Fitness in classification: area under the ROC curve:

 In signal detection theory, a receiver operating characteristic 
(ROC), or simply ROC curve, is a graphical plot which 
illustrates the performance of a binary classifier system as its 
discrimination threshold is varied.



Institut P', Poitiers, France – 04/06/2013

Genetic Programming for Classification

● The fitness function is in this case the maximization of 
the area under the ROC curve:

 Gives an idea of the sensitivity and the classification error 
variation of the classifiers.

 In the case that various « best » classifiers are kept, one 
is able to select the one that best fits to the needs of the 
problem

 Makes possible the combination of various classifiers 
depending on the threshold we want to apply

 Quite fast to compute O(nlog(n))
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Genetic Programming for Classification

● Example: Genetic Programming for Retentive 
Structures Detection
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Genetic Programming for Classification

● In this problem, we used a “standard” set of nodes 
(+,-,*,/,sin, cos), and added the problem specific inputs:

– Strength

– Rotational

– Divergence

– Strength 3x3

– Angle 3x3

– DistCoast
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Genetic Programming for Classification

● An individual takes all the features of a cell as an input 
and returns a probability value.

● An individual performs the classification on every cell of 
a map and returns a probability matrix for the cells to 
belong to a retentive structure
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Genetic Programming for Classification

● Parameters of the genetic programming algorithm:

– 80 generations

– 600 individuals

– Max depth of a tree: 15

– Mutation rate: 1%

– Crossover rate: 94%

– Reproduction rate: 5% with elitism

● Fitness: area under the ROC curve

● Learning time: more or less 1h

● Classification time: real time (for one map)
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Genetic Programming for Classification
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So what?

● Evolutionary Computation is very useful when 
deterministic methods fail or are not applicable

– This is the case in many real life problems

● Genetic algorithms are very efficient in complex 
optimization problems (very huge search space), and 
can solve multi-objective optimization problems

● Genetic Programming is one of the best methods for 
multi-variable non linear function regression

– This is also the case in many real life problem

● These techniques are widely successfully applied for 
industrial applications and are very flexible
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More?

● Genetic Programming still has to spread to other 
communities

● Learning time is still quite high, and depends on the 
problem (most of the processing time is used for 
evaluation)

● But generated solutions are very often very efficient
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How do I do?

● Several toolkits:

– ECJ (java) includes GA, GP, ES and more. 
(http://cs.gmu.edu/~eclab/projects/ecj/)

– OpenBeagle (C++) includes GA, GP. 
(http://code.google.com/p/beagle/)

– Many more small toolkits (Python, MathLab, R...)
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The End!

Thanks for your attention!
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