
Marc Segond

Introduction to Evolutionary
Computation

Institut P', Poitiers, France – 04/06/2013

Presentation

● Marc Segond, 34 years old, French
● PhD in Computer Science in 2006 (ULCO)
● Since end of 2012 Post-doctoral researcher /

Research and Development engineer at Ambrosys
GmbH (Germany)

● 4 years post-doctoral researcher at the European
Center for Soft Computing (Spain) 2008 - 2012

● Expertise: Bio-mimetic Algorithms, Intelligent
Data Mining, Graph Mining

Institut P', Poitiers, France – 04/06/2013

Contents

● What is Evolutionary Computation?
– History

– biological principles

– application to computer science
● Genetic Algorithms

– Details on mechanisms

– Few toy examples

● Genetic Programming
– Details on mechanisms

– Real life problem example

Institut P', Poitiers, France – 04/06/2013

Positioning of EC

● EC is part of computer science
● EC is not part of life sciences/biology
● Biology delivered inspiration and terminology
● EC can be applied in biological research

Institut P', Poitiers, France – 04/06/2013

EVOLUTION

Environment

Individual

Fitness

The Main Evolutionary Computing
Metaphor

PROBLEM SOLVING

Problem

Candidate Solution

Quality

Quality → chance for seeding new solutions

Fitness → chances for survival and reproduction

Institut P', Poitiers, France – 04/06/2013

Brief History 1: the ancestors

• 1948, Turing:
proposes “genetical or evolutionary search”

• 1962, Bremermann
optimization through evolution and recombination

• 1964, Rechenberg
introduces evolution strategies

• 1965, L. Fogel, Owens and Walsh
introduce evolutionary programming

• 1975, Holland
introduces genetic algorithms

• 1992, Koza
introduces genetic programming

Institut P', Poitiers, France – 04/06/2013

Brief History 2: The rise of EC

• 1985: first international conference (ICGA)

• 1990: first international conference in Europe (PPSN)

• 1993: first scientific EC journal (MIT Press)

• 1997: launch of European EC Research Network EvoNet

Institut P', Poitiers, France – 04/06/2013

EC in the early 21st Century

• 3 major EC conferences, about 10 small related ones

• 3 scientific core EC journals

• 750-1000 papers published in 2003 (estimate)

• EvoNet has over 150 member institutes

• uncountable (meaning: many) applications

• uncountable (meaning: ?) consultancy and R&D firms

Institut P', Poitiers, France – 04/06/2013

Darwinian Evolution 1:
Survival of the fittest

● All environments have finite resources

(i.e., can only support a limited number of individuals)

● Lifeforms have basic instinct/ life-cycles geared towards

reproduction

● Therefore some kind of selection is inevitable

● Those individuals that compete for the resources most

effectively have increased chance of reproduction

Institut P', Poitiers, France – 04/06/2013

Darwinian Evolution 2:
Diversity drives change

● Phenotypic traits:
– Behavior / physical differences that affect response to

environment
– Partly determined by inheritance, partly by factors during

development
– Unique to each individual, partly as a result of random

changes
● If phenotypic traits:

– Lead to higher chances of reproduction
– Can be inherited

 then they will tend to increase in subsequent
generations,

● leading to new combinations of traits …

Institut P', Poitiers, France – 04/06/2013

Darwinian Evolution:Summary

● Population consists of diverse set of individuals
● Combinations of traits that are better adapted tend to

increase representation in population

 Individuals are “units of selection”
● Variations occur through random changes yielding

constant source of diversity, coupled with selection
means that:

Population is the “unit of evolution”
● Note the absence of “guiding force”

Institut P', Poitiers, France – 04/06/2013

Adaptive landscape metaphor (Wright, 1932)

• Can envisage population with n traits as existing in a
n+1-dimensional space (landscape) with height
corresponding to fitness

• Each different individual (phenotype) represents a
single point on the landscape

• Population is therefore a “cloud” of points, moving on
the landscape over time as it evolves - adaptation

Institut P', Poitiers, France – 04/06/2013

Example with two traits

Institut P', Poitiers, France – 04/06/2013

Adaptive landscape metaphor (cont’d)

•Selection “pushes” population up the landscape

•Genetic drift:
• random variations in feature distribution
 (+ or -) arising from sampling error
• can cause the population “melt down” hills, thus
crossing valleys and leaving local optima

Institut P', Poitiers, France – 04/06/2013

Natural Genetics

● The information required to build a living organism is
coded in the DNA of that organism

● Genotype (DNA inside) determines phenotype
● Genes phenotypic traits is a complex mapping

– One gene may affect many traits (pleiotropy)
– Many genes may affect one trait (polygeny)

● Small changes in the genotype lead to small changes
in the organism (e.g., height, hair colour)

Institut P', Poitiers, France – 04/06/2013

Genes and the Genome

● Genes are encoded in strands of DNA called
chromosomes

● In most cells, there are two copies of each
chromosome (diploidy)

● The complete genetic material in an individual’s
genotype is called the Genome

● Within a species, most of the genetic material is the
same

Institut P', Poitiers, France – 04/06/2013

Example: Homo Sapiens

● Human DNA is organized into chromosomes
● Human body cells contains 23 pairs of chromosomes

which together define the physical attributes of the
individual:

Institut P', Poitiers, France – 04/06/2013

Reproductive Cells

● Gametes (sperm and egg cells) contain 23 individual
chromosomes rather than 23 pairs

● Cells with only one copy of each chromosome are
called Haploid

● Gametes are formed by a special form of cell splitting
called meiosis

● During meiosis the pairs of chromosome undergo an
operation called crossing-over

Institut P', Poitiers, France – 04/06/2013

Crossing-over during meiosis

 Chromosome pairs align and duplicate
 Inner pairs link at a centromere and swap parts of
themselves

 Outcome is one copy of maternal/paternal chromo-
some plus two entirely new combinations
 After crossing-over one of each pair goes into each
gamete

Institut P', Poitiers, France – 04/06/2013

Fertilisation

Sperm cell from Father Egg cell from Mother

New person cell (zygote)

Institut P', Poitiers, France – 04/06/2013

After fertilisation

● New zygote rapidly divides etc creating many cells all
with the same genetic contents

● Although all cells contain the same genes, depending
on, for example where they are in the organism, they
will behave differently

● This process of differential behavior during
development is called ontogenesis

● All of this uses, and is controlled by, the same
mechanism for decoding the genes in DNA

Institut P', Poitiers, France – 04/06/2013

Genetic code

• All proteins in life on earth are composed of sequences
built from 20 different amino acids

• DNA is built from four nucleotides in a double helix
spiral: purines A,G; pyrimidines T,C

• Triplets of these form codons, each of which codes for
a specific amino acid

• Much redundancy:
• purines complement pyrimidines
• the DNA contains much rubbish
• 43=64 codons code for 20 amino acids
• genetic code = the mapping from codons to amino acids

• For all natural life on earth, the genetic code is the
same !

Institut P', Poitiers, France – 04/06/2013

A central claim in molecular genetics: only one way flow

Genotype Phenotype

Genotype Phenotype

Lamarckism (saying that acquired features can be inher-
ited) is thus wrong!

Transcription, translation

Institut P', Poitiers, France – 04/06/2013

Mutation

● Occasionally some of the genetic material changes
very slightly during this process (replication error)

● This means that the child might have genetic material
information not inherited from either parent

● This can be
– catastrophic: offspring in not viable (most likely)
– neutral: new feature not influences fitness
– advantageous: strong new feature occurs

● Redundancy in the genetic code forms a good way of
error checking

Institut P', Poitiers, France – 04/06/2013

Motivations for EC: 1

 Nature has always served as a source of inspiration
for engineers and scientists

 The best problem solver known in nature is:
– the (human) brain that created “the wheel, New York,

wars and so on” (after Douglas Adams’ Hitch-Hikers
Guide)

– the evolution mechanism that created the human brain
(after Darwin’s Origin of Species)

 Answer 1 neurocomputing
 Answer 2 evolutionary computing

Institut P', Poitiers, France – 04/06/2013

Motivations for EC: 2

• Developing, analyzing, applying problem solving
methods a.k.a. algorithms is a central theme in
mathematics and computer science

• Time for thorough problem analysis decreases

• Complexity of problems to be solved increases

• Consequence:
Robust problem solving technology needed

Institut P', Poitiers, France – 04/06/2013

Problem type 1 : Optimization

● We have a model of our system and seek inputs that
give us a specified goal

 e.g.
– time tables for university, call center, or hospital
– design specifications, etc etc

Institut P', Poitiers, France – 04/06/2013

Optimization example: Satellite structure

Optimised satellite designs for
NASA to maximize vibration
isolation

Evolving: design structures

Fitness: vibration resistance

Evolutionary “creativity”

Institut P', Poitiers, France – 04/06/2013

Problem types 2: Modelling

● We have corresponding sets of inputs & outputs and
seek model that delivers correct output for every
known input

• Evolutionary machine learning

Institut P', Poitiers, France – 04/06/2013

Modelling example: loan applicant creditibility

British bank evolved cred-
itability model to predict
loan paying behavior of new
applicants

Evolving: prediction models

Fitness: model accuracy on
historical data

Institut P', Poitiers, France – 04/06/2013

Genetic Algorithms

Institut P', Poitiers, France – 04/06/2013

GA Quick Overview

● Developed: USA in the 1970’s
● Early names: J. Holland, K. DeJong, D. Goldberg
● Typically applied to:

– discrete optimization
● Attributed features:

– not too fast
– good heuristic for combinatorial problems

● Special Features:
– Traditionally emphasizes combining information from good

parents (crossover)
– many variants, e.g., reproduction models, operators

Institut P', Poitiers, France – 04/06/2013

Genetic algorithms

● Holland’s original GA is now known as the
simple genetic algorithm (SGA)

● Other GAs use different:
– Representations
– Mutations
– Crossovers
– Selection mechanisms

Institut P', Poitiers, France – 04/06/2013

SGA technical summary tableau

Representation Binary strings

Recombination N-point or uniform

Mutation Bitwise bit-flipping with fixed
probability

Parent selection Fitness-Proportionate

Survivor selection All children replace parents

Speciality Emphasis on crossover

Institut P', Poitiers, France – 04/06/2013

Genotype space = {0,1}LPhenotype space

Encoding
(representation)

Decoding
(inverse representation)

011101001

010001001

10010010

10010001

Representation

Institut P', Poitiers, France – 04/06/2013

SGA reproduction cycle

1. Select parents for the mating pool

(size of mating pool = population size)

2. Shuffle the mating pool

3. For each consecutive pair apply crossover with
probability pc , otherwise copy parents

4. For each offspring apply mutation (bit-flip with prob-
ability pm independently for each bit)

5. Replace the whole population with the resulting off-
spring

Institut P', Poitiers, France – 04/06/2013

SGA operators: 1-point crossover

● Choose a random point on the two parents
● Split parents at this crossover point
● Create children by exchanging tails
● Pc typically in range (0.6, 0.9)

Institut P', Poitiers, France – 04/06/2013

SGA operators: mutation

● Alter each gene independently with a probability pm

● pm is called the mutation rate
– Typically between 1/pop_size and 1/

chromosome_length

Institut P', Poitiers, France – 04/06/2013

● Main idea: better individuals get higher chance
– Chances proportional to fitness
– Implementation: roulette wheel technique

● Assign to each individual a part of
the roulette wheel

● Spin the wheel n times to select n
individuals

SGA operators: Selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

Institut P', Poitiers, France – 04/06/2013

An example after Goldberg ‘89 (1)

● Simple problem: max x2 over {0,1,…,31}
● GA approach:

– Representation: binary code, e.g. 01101 ↔ 13
– Population size: 4
– 1-point xover, bitwise mutation
– Roulette wheel selection
– Random initialisation

● We show one generational cycle done by hand

Institut P', Poitiers, France – 04/06/2013

x2 example: selection

Institut P', Poitiers, France – 04/06/2013

X2 example: crossover

Institut P', Poitiers, France – 04/06/2013

X2 example: mutation

Institut P', Poitiers, France – 04/06/2013

The simple GA

● Has been subject of many (early) studies
– still often used as benchmark for novel GAs

● Shows many shortcomings, e.g.
– Representation is too restrictive
– Mutation & crossovers only applicable for bit-string &

integer representations
– Selection mechanism sensitive for converging populations

with close fitness values
– Generational population model (step 5 in SGA repr. cycle)

can be improved with explicit survivor selection

Institut P', Poitiers, France – 04/06/2013

Alternative Crossover Operators

● Performance with 1 Point Crossover depends on the
order that variables occur in the representation
– more likely to keep together genes that are near each

other

– Can never keep together genes from opposite ends of
string

– This is known as Positional Bias

– Can be exploited if we know about the structure of our
problem, but this is not usually the case

Institut P', Poitiers, France – 04/06/2013

n-point crossover

● Choose n random crossover points
● Split along those points
● Glue parts, alternating between parents
● Generalisation of 1 point (still some positional bias)

Institut P', Poitiers, France – 04/06/2013

Uniform crossover

● Assign 'heads' to one parent, 'tails' to the other
● Flip a coin for each gene of the first child
● Make an inverse copy of the gene for the second child
● Inheritance is independent of position

Institut P', Poitiers, France – 04/06/2013

Crossover OR mutation?

● Decade long debate: which one is better / necessary /
main-background

● Answer (at least, rather wide agreement):
– it depends on the problem, but
– in general, it is good to have both
– both have a different role

Institut P', Poitiers, France – 04/06/2013

Exploration: Discovering promising areas in the search

space, i.e. gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using

information

There is co-operation AND competition between them

 Crossover is explorative, it makes a big jump to an area

somewhere “in between” two (parent) areas

 Mutation is exploitative, it creates random small

diversions, thereby staying near (in the area of) the parent

Crossover OR mutation? (cont’d)

Institut P', Poitiers, France – 04/06/2013

● Only crossover can combine information from two

parents

● Only mutation can introduce new information

(alleles)

● Crossover does not change the allele frequencies of

the population (thought experiment: 50% 0’s on first

bit in the population, 50% after performing n

crossovers)

● To hit the optimum you often need a ‘lucky’ mutation

Crossover OR mutation? (cont’d)

Institut P', Poitiers, France – 04/06/2013

Other representations

● Gray coding of integers (still binary chromosomes)
– Gray coding is a mapping that means that small changes in

the genotype cause small changes in the phenotype (unlike

binary coding). “Smoother” genotype-phenotype mapping

makes life easier for the GA

Nowadays it is generally accepted that it is better to

encode numerical variables directly as

● Integers

● Floating point variables

Institut P', Poitiers, France – 04/06/2013

Permutation Representations

 Ordering/sequencing problems form a special type
 Task is (or can be solved by) arranging some objects in

a certain order
– Example: sort algorithm: important thing is which elements

occur before others (order)
– Example: Travelling Salesman Problem (TSP) : important thing

is which elements occur next to each other (adjacency)

 These problems are generally expressed as a
permutation:
– if there are n variables then the representation is as a list of n

integers, each of which occurs exactly once

Institut P', Poitiers, France – 04/06/2013

Permutation representation: TSP example

● Problem:
• Given n cities
• Find a complete tour with

minimal length
● Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one

permutation (e.g. for n =4
[1,2,3,4], [3,4,2,1] are OK)

● Search space is BIG:

for 30 cities there are 30! ≈ 1032
possible tours

Institut P', Poitiers, France – 04/06/2013

Mutation operators for permutations

● Normal mutation operators lead to inadmissible
solutions
– e.g. bit-wise mutation : let gene i have value j
– changing to some other value k would mean that k

occurred twice and j no longer occurred
● Therefore must change at least two values
● Mutation parameter now reflects the probability

that some operator is applied once to the whole
string, rather than individually in each position

Institut P', Poitiers, France – 04/06/2013

Insert Mutation for permutations

● Pick two allele values at random
● Move the second to follow the first, shifting the

rest along to accommodate
● Note that this preserves most of the order and the

adjacency information

Institut P', Poitiers, France – 04/06/2013

Swap mutation for permutations

● Pick two alleles at random and swap their
positions

● Preserves most of adjacency information (4 links
broken), disrupts order more

Institut P', Poitiers, France – 04/06/2013

Inversion mutation for permutations

● Pick two alleles at random and then invert the
substring between them.

● Preserves most adjacency information (only
breaks two links) but disruptive of order
information

Institut P', Poitiers, France – 04/06/2013

● “Normal” crossover operators will often lead to
inadmissible solutions

● Many specialised operators have been devised
which focus on combining order or adjacency
information from the two parents

Crossover operators for permutations

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Institut P', Poitiers, France – 04/06/2013

Order 1 crossover

● Idea is to preserve relative order that elements occur
● Informal procedure:

1. Choose an arbitrary part from the first parent

2. Copy this part to the first child

3. Copy the numbers that are not in the first part, to the first
child:

● starting right from cut point of the copied part,
● using the order of the second parent
● and wrapping around at the end

4. Analogous for the second child, with parent roles
reversed

Institut P', Poitiers, France – 04/06/2013

Order 1 crossover example

● Copy randomly selected set from first parent

● Copy rest from second parent in order 1,9,3,8,2

Institut P', Poitiers, France – 04/06/2013

Cycle crossover

Basic idea:

Each allele comes from one parent together with its position.

Informal procedure:
1. Make a cycle of alleles from P1 in the following way.

(a) Start with the first allele of P1.

(b) Look at the allele at the same position in P2.

(c) Go to the position with the same allele in P1.

(d) Add this allele to the cycle.

(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions
they have in the first parent.

3. Take next cycle from second parent

Institut P', Poitiers, France – 04/06/2013

Cycle crossover example

● Step 1: identify cycles

● Step 2: copy alternate cycles into offspring

Institut P', Poitiers, France – 04/06/2013

Population Models

● SGA uses a Generational model:
– each individual survives for exactly one generation
– the entire set of parents is replaced by the offspring

● At the other end of the scale are Steady-State
models:
– one offspring is generated per generation,
– one member of population replaced,

● Generation Gap
– the proportion of the population replaced
– 1.0 for GGA, 1/pop_size for SSGA

Institut P', Poitiers, France – 04/06/2013

Fitness Based Competition

● Selection can occur in two places:
– Selection from current generation to take part in mating

(parent selection)
– Selection from parents + offspring to go into next

generation (survivor selection)
● Selection operators work on whole individual

– i.e. they are representation-independent
● Distinction between selection

– operators: define selection probabilities
– algorithms: define how probabilities are implemented

Institut P', Poitiers, France – 04/06/2013

Implementation example: SGA

● Expected number of copies of an individual i

 E(ni) = µ • f(i)/ � f�
(µ = pop.size, f(i) = fitness of i, �f� avg. fitness in pop.)
● Roulette wheel algorithm:

– Given a probability distribution, spin a 1-armed wheel n
times to make n selections

– No guarantees on actual value of ni

● Baker’s SUS algorithm:
– n evenly spaced arms on wheel and spin once

– Guarantees floor(E(ni)) ≤ ni ≤ ceil(E(ni))

Institut P', Poitiers, France – 04/06/2013

● Problems include
– One highly fit member can rapidly take over if rest of

population is much less fit: Premature Convergence
– At end of runs when fitnesses are similar, lose selection

pressure
● Scaling can fix last two problems

– Windowing: f’(i) = f(i) - β t
● where β is worst fitness in this (last n) generations

– Sigma Scaling: f’(i) = max(f(i) – (� f � - c • σf), 0.0)
● where c is a constant, usually 2.0

Fitness-Proportionate Selection

Institut P', Poitiers, France – 04/06/2013

Tournament Selection

● All methods above rely on global population
statistics
– Could be a bottleneck esp. on parallel machines
– Relies on presence of external fitness function which

might not exist: e.g. evolving game players
● Informal Procedure:

– Pick k members at random then select the best of
these

– Repeat to select more individuals

Institut P', Poitiers, France – 04/06/2013

Tournament Selection 2

● Probability of selecting i will depend on:
– Rank of i
– Size of sample k

● higher k increases selection pressure
– Whether contestants are picked with replacement

● Picking without replacement increases selection pressure

– Whether fittest contestant always wins (deterministic) or
this happens with probability p

Institut P', Poitiers, France – 04/06/2013

Two Special Cases

● Elitism
– Widely used in both population models (GGA, SSGA)
– Always keep at least one copy of the fittest solution so

far
● GENITOR: a.k.a. “delete-worst”

– From Whitley’s original Steady-State algorithm
– Rapid takeover : use with large populations or “no

duplicates” policy

Institut P', Poitiers, France – 04/06/2013

Genetic Programming

Institut P', Poitiers, France – 04/06/2013

GP quick overview

● Developed: USA in the 1990’s
● Early names: J. Koza
● Typically applied to:

– machine learning tasks (prediction, classification…)
● Attributed features:

– Competes (and most of the time beats) with neural nets and
alike (SVM, decision trees...)

– needs huge populations (thousands)
– Slow, but acceptable on modern machines (couple of hours to

couple of weeks for complex real life problems)
● Special:

– non-linear chromosomes: trees, graphs
– mutation possible but not necessary (disputed!)

Institut P', Poitiers, France – 04/06/2013

GP technical summary tableau

Representation Tree structures

Recombination Exchange of subtrees

Mutation Random change in trees

Parent selection Fitness proportional

Survivor selection Generational replacement

Institut P', Poitiers, France – 04/06/2013

Introductory example:
credit scoring

● Bank wants to distinguish good from bad loan
applicants

● Model needed that matches historical data

ID No of chil-
dren

Salary Marital
status

OK?

ID-1 2 45000 Married 0

ID-2 0 30000 Single 1

ID-3 1 40000 Divorced 1

…

Institut P', Poitiers, France – 04/06/2013

Introductory example:
credit scoring

● A possible model:
IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

● In general:
IF formula THEN good ELSE bad

● Only unknown is the right formula, hence
● Our search space (phenotypes) is the set of formulas
● Natural fitness of a formula: percentage of well

classified cases of the model it stands for
● Natural representation of formulas (genotypes) is:

parse trees

Institut P', Poitiers, France – 04/06/2013

Introductory example:
credit scoring

IF (NOC = 2) AND (S > 80000) THEN good ELSE bad

can be represented by the following tree

AND

S2NOC 80000

>=

Institut P', Poitiers, France – 04/06/2013

Tree based representation

● Trees are a universal form, e.g. consider
● Arithmetic formula

● Logical formula

● Program

+
−++⋅

15
)3(2

y
xπ

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y)))

i =1;
while (i < 20)
{

i = i +1
}

Institut P', Poitiers, France – 04/06/2013

Tree based representation

+
−++⋅

15
)3(2

y
xπ

Institut P', Poitiers, France – 04/06/2013

Tree based representation

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y)))

Institut P', Poitiers, France – 04/06/2013

Tree based representation

i =1;
while (i < 20)
{

i = i +1
}

Institut P', Poitiers, France – 04/06/2013

Tree based representation

● In GA, ES, EP chromosomes are linear structures
(bit strings, integer string, real-valued vectors,
permutations)

● Tree shaped chromosomes are non-linear
structures

● In GA, ES, EP the size of the chromosomes is
fixed

● Trees in GP may vary in depth and width

Institut P', Poitiers, France – 04/06/2013

Tree based representation

 Symbolic expressions can be defined by
– Terminal set T
– Function set F (with the arities of function symbols)

 Adopting the following general recursive definition:
1. Every t ∈ T is a correct expression
2. f(e1, …, en) is a correct expression if f ∈ F, arity(f)=n and e1,

…, en are correct expressions

3. There are no other forms of correct expressions
 In general, expressions in GP are not typed (closure

property: any f ∈ F can take any g ∈ F as argument)

Institut P', Poitiers, France – 04/06/2013

Offspring creation scheme

Compare
● GA scheme using crossover AND mutation

sequentially (be it probabilistically)
● GP scheme using crossover OR mutation (chosen

probabilistically)

Institut P', Poitiers, France – 04/06/2013

GP flowchartGA flowchart

Institut P', Poitiers, France – 04/06/2013

Mutation

● Most common mutation: replace randomly chosen
subtree by randomly generated tree

Institut P', Poitiers, France – 04/06/2013

Mutation cont’d

● Mutation has two parameters:
– Probability pm to choose mutation vs. recombination

– Probability to chose an internal point as the root of the
subtree to be replaced

● Remarkably pm is advised to be 0 (Koza’92) or
very small, like 0.05 (Banzhaf et al. ’98)

● The size of the child can exceed the size of the
parent

Institut P', Poitiers, France – 04/06/2013

Recombination

● Most common recombination: exchange two
randomly chosen subtrees among the parents

● Recombination has two parameters:
– Probability pc to choose recombination vs. mutation

– Probability to chose an internal point within each parent
as crossover point

● The size of offspring can exceed that of the
parents

Institut P', Poitiers, France – 04/06/2013

Child 2

Parent 1 Parent 2

Child 1

Institut P', Poitiers, France – 04/06/2013

Selection

● Parent selection typically fitness proportionate
● Over-selection in very large populations

– rank population by fitness and divide it into two groups:
– group 1: best x% of population, group 2 other (100-x)%
– 80% of selection operations chooses from group 1, 20% from group 2
– for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%

● Survivor selection:
– Typical: generational scheme (thus none)

Institut P', Poitiers, France – 04/06/2013

Initialisation

● Maximum initial depth of trees Dmax is set

● Full method (each branch has depth = Dmax):
– nodes at depth d < Dmax randomly chosen from function set F

– nodes at depth d = Dmax randomly chosen from terminal set T

● Grow method (each branch has depth ≤ Dmax):
– nodes at depth d < Dmax randomly chosen from F ∪ T

– nodes at depth d = Dmax randomly chosen from T

● Common GP initialisation: ramped half-and-half,
where grow & full method each deliver half of initial
population

Institut P', Poitiers, France – 04/06/2013

Bloat

● Bloat = “survival of the fattest”, i.e., the tree sizes
in the population are increasing over time

● Ongoing research and debate about the reasons
● Needs countermeasures, e.g.

– Prohibiting variation operators that would deliver “too
big” children

– Parsimony pressure: penalty for being oversized

Institut P', Poitiers, France – 04/06/2013

Problems involving “physical”
environments

● Trees for data fitting vs. trees (programs) that are
“really” executable

● Execution can change the environment the
calculation of fitness

● Example: robot controller
● Fitness calculations mostly by simulation, ranging from

expensive to extremely expensive (in time)
● But evolved controllers are often to very good

Institut P', Poitiers, France – 04/06/2013

Example application:
symbolic regression

● Given some points in R2, (x1, y1), … , (xn, yn)

● Find function f(x) s.t. ∀i = 1, …, n : f(xi) = yi
● Possible GP solution:

– Representation by F = {+, -, /, sin, cos}, T = R ∪ {x}
– Fitness is the error
– All operators standard
– pop.size = 1000, ramped half-half initialisation
– Termination: n “hits” or 50 generations reached (where “hit” is

if | f(xi) – yi | < 0.0001)

err(f)=∑
i=1

n

(f (xi)− yi)
2

Institut P', Poitiers, France – 04/06/2013

Genetic Programming for Classification

● Genetic Programming can perform classification:

– Use only binary trees: only works with very few problems

– Use threshold on a regression problem
● How to set the threshold?

Institut P', Poitiers, France – 04/06/2013

Genetic Programming for Classification

● Fitness in classification: area under the ROC curve:

 In signal detection theory, a receiver operating characteristic
(ROC), or simply ROC curve, is a graphical plot which
illustrates the performance of a binary classifier system as its
discrimination threshold is varied.

Institut P', Poitiers, France – 04/06/2013

Genetic Programming for Classification

● The fitness function is in this case the maximization of
the area under the ROC curve:

 Gives an idea of the sensitivity and the classification error
variation of the classifiers.

 In the case that various « best » classifiers are kept, one
is able to select the one that best fits to the needs of the
problem

 Makes possible the combination of various classifiers
depending on the threshold we want to apply

 Quite fast to compute O(nlog(n))

Institut P', Poitiers, France – 04/06/2013

Genetic Programming for Classification

● Example: Genetic Programming for Retentive
Structures Detection

Institut P', Poitiers, France – 04/06/2013

Genetic Programming for Classification

● In this problem, we used a “standard” set of nodes
(+,-,*,/,sin, cos), and added the problem specific inputs:

– Strength

– Rotational

– Divergence

– Strength 3x3

– Angle 3x3

– DistCoast

Institut P', Poitiers, France – 04/06/2013

Genetic Programming for Classification

● An individual takes all the features of a cell as an input
and returns a probability value.

● An individual performs the classification on every cell of
a map and returns a probability matrix for the cells to
belong to a retentive structure

Institut P', Poitiers, France – 04/06/2013

Genetic Programming for Classification

● Parameters of the genetic programming algorithm:

– 80 generations

– 600 individuals

– Max depth of a tree: 15

– Mutation rate: 1%

– Crossover rate: 94%

– Reproduction rate: 5% with elitism

● Fitness: area under the ROC curve

● Learning time: more or less 1h

● Classification time: real time (for one map)

Institut P', Poitiers, France – 04/06/2013

Genetic Programming for Classification

Institut P', Poitiers, France – 04/06/2013

So what?

● Evolutionary Computation is very useful when
deterministic methods fail or are not applicable

– This is the case in many real life problems

● Genetic algorithms are very efficient in complex
optimization problems (very huge search space), and
can solve multi-objective optimization problems

● Genetic Programming is one of the best methods for
multi-variable non linear function regression

– This is also the case in many real life problem

● These techniques are widely successfully applied for
industrial applications and are very flexible

Institut P', Poitiers, France – 04/06/2013

More?

● Genetic Programming still has to spread to other
communities

● Learning time is still quite high, and depends on the
problem (most of the processing time is used for
evaluation)

● But generated solutions are very often very efficient

Institut P', Poitiers, France – 04/06/2013

How do I do?

● Several toolkits:

– ECJ (java) includes GA, GP, ES and more.
(http://cs.gmu.edu/~eclab/projects/ecj/)

– OpenBeagle (C++) includes GA, GP.
(http://code.google.com/p/beagle/)

– Many more small toolkits (Python, MathLab, R...)

Institut P', Poitiers, France – 04/06/2013

The End!

Thanks for your attention!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Genetic Programming
	GP quick overview
	GP technical summary tableau
	Introductory example: credit scoring
	Slide 74
	Slide 75
	Tree based representation
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Offspring creation scheme
	PowerPoint Presentation
	Mutation
	Mutation cont’d
	Recombination
	Slide 87
	Selection
	Initialisation
	Bloat
	Problems involving “physical” environments
	Example application: symbolic regression
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

