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IntrOd uctlon UNIVERS;;);;)IPISA
* Global stability analysis provides important information for several classes of
unstable flows

* Adjoint methods are often used to study the sensitivity of a global instability to a
wide range of perturbations

e provide information on the nature and hidden characteristics of the
instability

* provide hints on how to control the investigated instabilities
* Rigorous application of these methods is limited to low Reynolds numbers

* For given classes of flows (bluff-bodies), application of these methods to mean
flow fields, even neglecting Reynolds stresses, provide accurate estimation of some
properties of the saturated instability
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* Global stability and sensitivity analysis: a concise introduction

e Applications with focus on:
— Flow control

— Application to a case at high Reynolds number

June 04 2013, Poitiers
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Global stability and sensitivity analysis:
a concise introduction
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e Starting point: a steady solution of the NS equations (Baseflow Ub):
1
U, VU, + VP, — —V?U, =0
Re
V-U,=0

* Perturbation of Ub in modal form:

U(x,t) = Up(x,t) +eu(x)e’’

P(x,t) = Py(x,t) + ep(x) e’
* Linearized (e<<1) dynamics of the perturbation: resulting eigenvalue problem:

cu+u-VU,+Up-Vu+ Vp— évZuzo
V-u=0
« Given the mode (o, u,p)
Real(o)  amplification factor (>0 unstable)

Imag(c)/(2m)  frequency of the mode

June 04 2013, Poitiers
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» Stability properties can be affected by modifications of the flow

» Sensitivity of the instability to particular modifications add
information on its physical origin/properties

» Information on sensitivity can be used also to control the
instability by proper modifications on the flow

Adjoint methods have been used in the last years to
systematically characterize the sensitivity of unstable
modes to various parameters in the linear framework



Sensitivity analysis

When the eigenvalue problem is perturbed each eigenfunction/

eigenvalue changes consequently

perturbed

perturbation
(i g 5{

R

unperturbed

* Objective: study the variation of a considered eigenvalue o

* Linear framework: the analysis is linearized

June 04 2013, Poitiers
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Sensitivity analysis

* Different perturbations can be applied. For instance:

1) perturbations acting only on the stability equations
2) Generic perturbations of the base flow field

3) Perturbations acting on the baseflow equations

Baseflow equations > eigenvalue problem >(o,u,p)
(Ub7 Pb)

June 04 2013, Poitiers



Sensitivity analysis
perturbation of the linearized perturbation equations
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 Unperturbed problem:

V-u=0

Baseflow equations

1
cu+u-VU,+ U -Vu+ Vp — ﬁv%:o
> eigenvalue problem >(0,u, p)
(Up, )

June 04 2013, Poitiers



Sensitivity analysis
perturbation of the linearized perturbation equations
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e Perturbed problem (&H linear):

fu+u-VU,+ U, -Va+ Vp —

V-u=0

Baseflow equations

Re

(Up, Pp)

>

1
_VQ 0 = 5H(uap)

Perturbation
(linear functional)

>(o,u,p)

eigenvalue problem

June 04 2013, Poitiers



Sensitivity analysis o
perturbation of the linearized perturbation equations

Perturbed problem (SH linear):

~ 1
cu+u-VU,+ Uy -Vu—+ Vp — @Vzﬁ — 5H(uap)

V-u=90 Perturbation
(linear functional)

Result of the sensitivity analysis for a mode (0" u, p)

(u',6H(u,p))

o7 = Tt )

Adjoint eigenvalue problem associated to the linearized equations
1

Viut =0
Re =

0*u++VUb-u+—Ub°Vu++Vp+—
V-ut =0



Sensitivity analysis
perturbation of the baseflow field

Unperturbed problem:
1
cu+u-VU,+Up -Vu+Vp— —V?u=0

V-u=0

Baseflow equations

Re

(Up, Pp)

>

>(o,u,p)

eigenvalue problem

UNIVERSITA DI PISA
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Sensitivity analysis
perturbation of the baseflow field

Perturbed problem:

~

ocu-+u- VU,

~

+ Uy

V-u=0

- 1
.Va+Vp— —V?a=0

Re

Baseflow equations

(Up, Pp)

L)

>

>(o,u,p)

eigenvalue problem

UNIVERSITA DI PISA
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Sensitivity analysis & 2
perturbation of the baseflow field
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* Perturbed problem:

~

ocu-+u- VU,

~

U,

V-u=0

- 1
-Vﬁ+Vp—EV2~ =0

* Result of the sensitivity analysis (adjoint stab. equations involved) for

mode (o, u, p)

(5(7:(

M, 5Uy)

(0, a)

MT =4 -Va™ —VvVa*-a"'




Sensitivity analysis
perturbation of the base-flow equations
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 Unperturbed problem:

1
U, - VU, +VP, — —V?U, =0

V- -Uy=0

ou + E(Ub, Pb)u

Baseflow equations

Re

=0

(Up, Pp)

>

eigenvalue problem

>(o,u,p)

June 04 2013, Poitiers



Sensitivity analysis
perturbation of the base-flow equations
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Perturbed problem:

- - - 1 - =
U, - VU, + VP, — EV2U,, = 6F(Uy, P,)

V - fjb — () Perturbation

~ - (linear functional)
5+ L(0y, B) = 0

Baseflow equations > eigenvalue problem >(o,u,p)

(Up, Pp)

June 04 2013, Poitiers



Sensitivity analysis
perturbation of the base-flow equations
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* Perturbed problem:
. . . 1 . e —
U, VU, + VP, — R—V2Ub = 0F(Uy, B)
e
V - fjb — (O Perturbation
~ - - (linear functional)
ou + ,C(Ub, Pb) =0
* Result of the sensitivity analysis for mode (o, u, p)
(Up ™", 0F)
(at, )

Forced adjoint problem associated to the baseflow equations

0o =

1
VU - U — Uy - VU, + VP — §v2ub+ =a*-Vat -V

wnp
wr

V-U,"=0



Sensitivity analysis
discrete vs continuous approaches
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Continuous approach: starting from PDEs governing the eigenvalue, equivalent PDEs
governing adjoint problems are derived. In order to obtain numerical results, all the
so-obtained PDEs are discretized separately.

Discrete approach: starting point is the semi-discretized (in space) Navier-Stokes
equations (quadratic ODE): the stability problem and related adjoint problems are
derived directly for the discrete ODE system.

The two approaches are in sense parallel......




Sensitivity analysis at discrete level v

 Semi-discretized (in space) NS equations; resulting ODE:
du
Bl - L kau uy + Lz]u =0
* Discrete eigenvalue problem:
NigU; Up + Lj;U; =0
(Ni,j,k Ui + Ni,k,j Ui + Lz'j) U, + aBijuj =0

Baseflow egs.

-~

L (U) Eigenvalue probl.
* Perturbed discrete eigenvalue problem:
Nijk Uj Uk s Lij Uj —4 Pij Uj Perturbation
- o -~ -~ . ~
Li;(U) uj + 0 Biju; = Qiju;
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Sensitivity analysis at discrete level
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Objective of the analysis: find the perturbation of the eigenvalue as a
function of generic perturbations delta P, delta Q around the unperturbed
system (P=Q=0)

Straighforward method: lagrangian formulation
(index repetition implies summation)

Lagrangian multipliers
(adjoint variables)

J:O' (NZJkUJ Uk—l—LijUj—PijUj) -(Lg,Uj—i‘O'BijUj—QijUj)
*

Considered

eigenvalue

Baseflow problem

Eigenvalue problem

June 04 2013, Poitiers




Sensitivity analysis at discrete level

UNIVERSITA DI P1SA

Variations of J with respect to the single variables is set to O:

o,

g—ézi =0 — Nz’jkz Uj Uk; -+ LijUj — Pz'jUj =0
5d C
@-5% =0— Lz’j? U + aBijuj — Qijuj =0
0J . .
J
0J
51U
g—Z(SO' =0— y:‘BZjuj =1
g—;dP = g—;5P = Z;k(SPUUJ

0Q

0J oo .
~50Q = —=0Q = y;0Q;; u;

0Q

Original baseflow equations

Original eigenvalue problem

Adjoint linear eigenvalue problem

=0 — 2] (Nijk Up + Nigj Ug + Lij — Pij) + y; (Nikj + Nije + Lij) uj =0

Adjoint forced baseflow problem

Normalization cond.

Eigenvalue variation with respect to a generic matrix P

Eigenvalue variation with respect to a generic matrix Q

June 04 2013, Poitiers



Sensitivity analysis at discrete level
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Discrete formulation Continuous formulation
U, - VU, + VP, L VU, =0
Nijr Uj U + LU = 0 b VBV = RV =
V-U,=0
1
. VU, + Up - — —V?u=0
L?j,uj+JB¢juj—Q¢juj=0 ocu-+u p + Up-Vu+ Vp ReVu
V-u=0
%t cut — U . Vut +_ Lo+ _
y;kL%—l—nyBij:O oc'u” +VUp-u Up-Vu™ +Vp R@Vu =
V-um=0
2; (Niji Uk + Nigj U + Lij — Pij) = VUp, - Uf — Up - VU," + VP — évQUtﬁ — " vat — va*-at
= —y; (Nikj + Niji + Lij) u; =0 V.U =0
oo (Ub+75F)
2T 5P = 2*6P;. U, S0 =
sp0r = 70F5U; 77 T(at,a)
do (ut,dH(u, p))
_5 = *5 i Ui — 9 9
50~ ¥ioQi T

June 04 2013, Poitiers
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Perturbation of linearized equation: A B M. S
Prop. Feedback control of vortex shedding ) * | s '& N
i 7 i 'el_‘;‘ X :
S. Camarri and A. lollo, PoF 22(094102), 2010 I ra—— « T
=z S P

Perturbation of the base-flow equations
Passive control of a pitchfork bifurcation by a control
cylinder in the flow

A. Fani, S. Camarri, and M. V. Salvetti, PoF 24(084102), 2012.

Sensitivity analysis at high Reynolds number:
Application to PIV data past a porous cylinder

S. Camarri, B. E. G. Fallenius, and J. H. M. Fransson, JFM 715, 2013.

Sensitivity analysis and control maps for fully 3D configs:
Application to a fully 3D T-Mixer

A. Fani, S. Camarri, and M. V. Salvetti, accepted, PoF 2013
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Perturbation of linearized equation:
Prop. Feedback control of vortex shedding u ) ¢ | N
S. Camarri and A. lollo, PoF 22(094102), 2010 —

Applications to flow analysis and control

Perturbation of linearized equation for the
design of a proportional feedback control
of vortex shedding past a bluff body

June 04 2013, Poitiers




Flow control by means of a perturbation of the
linearized disturbance equations

Typical case when the applied control leaves the mean flow
unaltered and the control acts only on the linearized equations

Example: a feedback control based only on the perturbation field to
control the vortex shedding instability past a cylinder:
— Proof of concept for the use of sensitivity analysis for flow control

— Realizable control: a few velocity probes, surface jets as actuators,
simple proportional feedback control

— Objective of control: to make the steady flow linearly stable

— Proposal of an iterative strategy because the control based solely on
the sensitivity analysis of uncontrolled flow can be misleading (action
of control out of the linear range).




Flow control by menas of a perturbation of the
linearized disturbance equations UNnvessiTh prPisa

* Flow configuration (incompressible 2D flow):

- o g == == == == 4
T R
- | . Sensor |
N\ ' Computational Y s |
\domain . .
| ide et / :
U | * Ny Y i |H
e ARSS .
| S jet o X
' P I l
- - ola 3 !
. : | :
.y i in oul | !
l‘_”- __________ I' -------------------------------------- T ’

June 04 2013, Poitiers
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Flow control by menas of a perturbation of the -
linearized disturbance equations v prPis

* Flow configuration (incompressible 2D flow):
Jet width: 0.16 L

TN i Gompuational vy SO A Comp. domain dims:
v | ¥ S MR $/ L g -12.5L<x<20.5L
7 “oh e T X AL<x<4L
7 e e GR1 540X330 (~5-10° dof)
oot FAonnn, GR2 810X494 (~10° dof)

* Reference quantities: Uc, L
® Critical Reynolds number for primary instability: Re., ~ 59

® Objective of control: linearly stabilize the steady unstable solution for Re>59

June 04 2013, Poitiers



Flow control by menas of a perturbation of the -
linearized disturbance equations v prPis

* Flow configuration (incompressible 2D flow):

=== T
— t Computational Yo Senso !
domain . :
| » : é ““4_]@1--.'.{ r :
U ¥ 4 s e, " H
! I ~ ;~~~~ 1
- i I_, *1 S ' - = :
? v iffljet Y X
- | g " XS 1
<3 = <3 1=
- Lin Lout
\

___________

* Boundary conditions on the jet surface S;:proportional feedback from a set
of ideal velocity probes.

® Only the difference between the measured flow and the steady unstable
field is fed back to the actuators: the steady unstable flow remains a solution

of the controlled flow

June 04 2013, Poitiers
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Sensitivity analysis at discrete level v

* This control perturbs only the linearized stability equations:
Lg,uj + O'Bijuj' — Qiju]' =0

 The control matrix Q at discrete level can be represented as follows:

N
- Z Ksc(wm Ys, 95)
s=1

June 04 2013, Poitiers
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Sensitivity analysis at discrete level v

* This control perturbs only the linearized stability equations:
Lg,uj + O'Bijuj' — Qiju]' =0

 The control matrix Q at discrete level can be represented as follows:

Feedback coefficient

Number of probes Posmon of velocity probes

K C( :cs,ys, )

'Angle between the x-axis and the
Matrix due to the control measured veloc. component

June 04 2013, Poitiers



Sensitivity analysis at discrete level v

This control perturbs only the linearized stability equations:
LS

ij» Wi +oBiju; — Qijuj =0

The control matrix Q at discrete level can be represented as follows:

N
Q=-) K.C(xsys,0s)
s=1

The effect of perturbation is computed by the adjoint stab. problem:
50’ — y,;k5Q/,,j Uj

To design the control we need to know the perturbation matrix Q as a
function of the control parameters (feedback coeff and position of probes)

N aC aC aC

0Q = ; { [C(xsangsﬂ 0K+ Ksa—%<$syysaes)] 5$8+[Ksa_ys(wsvysaes>:| 5y8+[K38_98($37y3793>:| 593}




Design of the control

The adjoint analysis allows to predict the shift of the eigenvalue of the
discrete system as the control parameters (feedback coefficients, sensor
positions, measured veloc. component) are perturbed.

~Sensitivity analysis on SO
state with partial control S1 L Im !

0 o Uncontrolled state SO

Sensitivity analysis on S1

Eigenvalue trajectory < Re
due to control design

stable unstable




Design of the control

We can design the control strategy iteratively, by driving the
unstable eigenvalues in the stable region of the complex plane

=
Stable
>
Re
stable unstable

Sensitivity analysis on SO

controII d.state SO
ens. ana ysSis on

Sens. analy5|s on S1




Design of the control

* Stable eigenvalues are perturbed also by the control and may eventually become unstable

* Adopted strategy to control the spectrum: define a function of the spectrum of the
controlled system such that the minimum is reached when the system is stabilized. The
previous analysis allows the computation of the gradient of the function.

* The control is designed by minimizing this function f, which depends on the control

parameters

The minimum of f (=0)
is obtained when all
the eigenvalues are
stable

Imag .
: Penalized region
. ’
e o e
>
stable unstable Real
i |Stability margin




Design of the control

] UNIVERSITA DI P1sA
System without control l

SIIvy

(steady unstable solution)
System with control
l (2o v, 0K )
c l lterative process:
ompute:
Eigenvalues Compute: tO bypaSS the faCt
Eigenvectors Eigenvalues PR
Adjoint Eigenvectors Eigenvectors that t_he .SenSItIVIty
Adjoint Eigenvectors analysis gives results
l l that are accurate
Fix the initial positions of the sensors and Evaluate the gradient Only for a small
the components of measured velocity of f(01,09,....0Na) perturbaﬁon of the
1_ 1_ 1_
Ts =Ts, Ys = Ys, 05 =0 l control parameters
K!=0 : . .
L Execute a descent (linearized analysis).
‘= minimizing step for f
No

Check final spectrum

June 04 2013, Poitiers



Results: spectrum of the uncontrolled system -
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0.9r R .
Increasing Re | //: | © Re=90
w—l | | vV Re=120
; O Re=130
085 # Re=140
| v Re=120 (GR2)
D | .
5 08 Unstable mode
"ty |
e | _ /
- — | f/r"‘""-‘*x
£ 0.75" "
| Stable but monitored
0.7 modes
| Stable Unstable
0.65" 1 : J
°0.4 0.2 0 0.2

Real axis

June 04 2013, Poitiers
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Results
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Examples of controls using one velocity sensor placed in the wake on the symmetry line,
measuring the vertical component of velocity.

Control parameters: xs, ks

- ' Computational Sensor !
; domain :
\ |
|
Uc | 'P 0‘. i H
S e : L - e
| X
‘ 2 | Xs |
l<3 [ o> <3 [ !
| |
_.’ : n out | :
[ - - ~ gl L R K 3

June 04 2013, Poitiers



Results: sensitivity maps with respect to the: - -

...............................................................................................

ool ........... ........... ......... :---<-S-t?a~bi-l

........................................

Re[m, (x_,0,%/2)]

s Destabilizing

Re[m, (x_,0,x/2)]
S
e

o Remeo | T =
v Re-120 :X=25

* Re=140 : . : :
I T 1 1 L] 1 1 1
1 1.5 2 25 3 3.5 - 45

A=

© Re=90
v Re=120
* Re=140

| & Relm,x om2)) : : : : :
| o Relm,(x 0m/2)][" P . e o Ty :

o Relm, (xs,0,1d2)]

X L L 1 1 L J
1 15 2 25 3 3.5 4 4.5 5
xS/D



Results: examples of control at Re=90
(constraint: one vert.veloc. sensor with ys—(@)mmm

1r : T
Final sensor position: x-3D Stable © Unstable

Final gain value K=0.61

System stabilized

0.9f |

0.85} - :ﬁ 7
:a’ 0'2 - ("P ‘
g 08 '
E

0.75F

initial position
initial x1=2.5 D; x1,K1 unknowns
=4.9 D; K, unknown

0.85[ , x,=2.5D;K, unknown
® same as open circle on GR2
0.6 : : :
-0.4 -0.3 -0.2 -0.1 0 0.1

Real(o)

June 04 2013, Poitiers



Results: examples of control at Re=90 ):
(constraint: sensor position fixed) v

System is NOT STABILIZED !

Stable - Unstable
- :

0.95}

Initial sensit. analysis

0.9}

0.85f

0.81

Imag(o)

0.75F

+ initial position
070  initial x,=2.5 D; x,.K, unknowns }
‘e
C‘
0.6 : ‘ :
-0.4 -0.3 -0.2 -0.1 0 0.1

Real(o)

EPFL Lausanne, 16 June 2011 June 04 2013, Poitiers



Attraction basin of the stabilized system

(a-posteriori tests)

UNIVERSITA DI P1SA

The design guarantees that, when finished with success, the steady solution is linearly
stable. The basin of attraction of this stable point for the system needs to be explored a-

posteriori.

Re=90 (Recr=59)

Saturated Re=120;(Recr=59)
state S , Vert. veloc. on — :
the symmetry line  os| o | | ‘ N \
g o4l I | |
§ ° ~ 0.3 {,0,_—-_
g 0.2 oo
-0.5 . 2 . - = 01 _::Z;_. an
-40 -20 ! 20 40 60 80 100 120 140 160 £
Time § 0
0>.) L
03 Jet velocity ~0.1 ;
- -0.2f Impulsive
g o -03I'start of the V
g™ 4 cylinder |
-0.2f -05 u v u U
0.3}
A 20 i 20 20 60 80 100 120 40 160 0 50 100 150
Time Time

Impulsive application of the control

Maximum amplitude of the unstable mode
counter-acted by the control

June 04 2013, Poitiers
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Perturbation of the base-flow equations

Passive control of a pitchfork bifurcation by a control

cylinder in the flow

A. Fani, S. Camarri, and M. V. Salvetti, PoF 24(084102), 2012.

ISA

Applications to flow analysis and control

Passive control of the pitchfork instability
in @ symmetric plane channel with a
sudden expansion

June 04 2013, Poitiers
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expansion

ith ER=D/d=3

Incompressible flow in a 2-D plane channel w

June 04 2013, Poitiers



Symmetric plane channel with a sudden

UNIVERSITA DI P1sA

expansion

Either symmetric or asymmetric

solution depending on the flow

Reynolds number as compared to some

critical value

Current

> 0

« ° 8 O Alleborn (1997) |
0 Battaglia (1997) 9/(@/@/
/ X b
§ 5 ............... <> o
2 4 ‘ ‘
X 0 : : :
50 75 100 125 150

June 04 2013, Poitiers Re



|: Stability analysis

Real valued eigenmodeis found (w = 0)

0.02

UNIVERSITA DI PISA
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Il: passive control strategy

@ A small control cylinder of diameter d*, introduced in the
channel at the position (xg, yo)

June 04 2013, Poitiers



Il: passive control strategy

@ A small control cylinder of diameter d*, introduced in the
channel at the position (xg, yo)

@ The cylinder is modeled by the force it exerts on the flow

June 04 2013, Poitiers



Il: passive control strategy

Q@ A small control cylinder of diameter d*, introduced in the
channel at the position (xg, yo)

@ The cylinder is modeled by the force it exerts on the flow

© Linearized drag force:
Fa —a[[|Usll(Us + ) + (757 ) Us| 5(x — %0,y = 0)

June 04 2013, Poitiers



Il: passive control strategy

@ A small control cylinder of diameter d*, introduced in the
channel at the position (xg, yo)

@ The cylinder is modeled by the force it exerts on the flow
© Linearized drag force:
F~—a [||Ub||(Ub +10) + (||U I ) Ub] O(x =0,y = y0)

Q o = a(d*) The force amplitude is a function of the
cylinder diameter.

June 04 2013, Poitiers



Il: passive control strategy

@ A small control cylinder of diameter d*, introduced in the
channel at the position (xg, ¥o)

@ The cylinder is modeled by the force it exerts on the flow
© Linearized drag force:
Fa—a|[[Usll(Us + ) + (757 @) Us| 00x = 50,y — y0)

Q o = a(d*) The force amplitude is a function of the
cylinder diameter.

>

Eigenvalue variation caused by the cylinder

The drag is a function of both base flow and perturbation.
(S(T: (S(T(Ub. l,.\I)

We can estimate the effect of both the two different
contributions to the force on the instability using the previous
analysis.

June 04 2013, Poitiers



Il passive control strategy s i

We can define a sensitivity function S, which gives the eigenvalue variation for
each position of the cylinder (xg, yo):

a is a function of
the cylinder
diameterd*®

0.05

{0

-0.05

-0.15

-0.25

The minimum value of Sisat x, = 0.15 y = 0 = optimal position

June 04 2013, Poitiers



II: Investigation of the control strategy by DNS “* /-
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Cylinder introduced impulsively, starting from the asymmetric state

d* =0.02x,=0.15y, = 0

NOT IN SCALE

N —
- ‘ ﬂ—,-.,_/_a_———r-:---
1| :

0 2 4 6 8
X

Vertical velocity measured in a point on the centerline

June 04 2013, Poitiers



ll: Investigation of the control strategy by DNS

UNIVERSITA DI PISA

Cylinder introduced impulsively, starting from the asymmetric state

d* =0.02x, = 0.15y, = 0

Time trace of the vertical velocity
in a point along the centerline

0.02

/ Re=110: the flow is not stabilized

O Re=90
¢ Re=100] -
* Re=110

200 400 600 800 1000 1200

June 04 2013, Poitiers



lll: Investigation of the control strategy by DNS

UNIVERSITA DI P1SA

Re=100d™ = 0.02

June 04 2013, Poitiers



lll: Investigation of the control strategy by DNS

UNIVERSITA DI P1SA

Re=100d™ = 0.02

Weak interaction
between the
vorticity of the
cylinder wake and
the wall vorticity

June 04 2013, Poitiers
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Re=100d™ = 0.02

> Deviation of the
streamlines
entering the
channel from the
smaller one.

» Asymmetric
deviation: the
streamline on the
centerline is
deviated towards
the part where the
separation is
smaller

June 04 2013, Poitiers



2
I 1.2 Re=100d* = 0.02

Two effects:

41 o 1 2 3 4 5 6 7 8 9 10  —=—=1 Convectionof
vorticity from the
smaller channels
Alteration of the
streamlines and
production of
vorticity at the
channel walls.

June 04 2013, Poitiers



The initial state is the controlled symmetric solution

Ad hoc simulation
where the
production of new
vorticity from the
walls in the larger
channel is
annihilated :

Navier Stokes
equations in terms
of disturbance

Slip condition for
the perturbation
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Ad hoc simulation
where the
production of new
vorticity from the
walls in the larger
channel is
annihilated :

Navier Stokes
equations in terms
of disturbance

Slip condition for
the perturbation

Modifications in terms of convection of vorticity from the smaller channel is not
sufficient to control the instability

June 04 2013, Poitiers



I1I: Non linear effects of the controlling force
amplitude on the eigenvalue estimation

Eigenvalue drift evaluated with sensitivity analysis is exact only
for infinitesimal perturbations.

UNIVERSITA DI PISA

A = \g + aS(xp. yo) where X is the growth rate predicted by
the sensitivity analysis and A\g is the growth rate for the
uncontrolled flow.
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I1I: Non linear effects of the controlling force
amplitude on the eigenvalue estimation

UNIVERSITA DI PISA

Eigenvalue drift evaluated with sensitivity analysis is exact only
for infinitesimal perturbations.

A = Ao + aS(xg.yo) where X is the growth rate predicted by
the sensitivity analysis and A\g is the growth rate for the
uncontrolled flow.

We can retreive some non-linear effects due to a finite
amplitude of the forcing with the following procedure:

@ Application of the linearized drag force at a fixed position
(Xg = 0.15.y0 = O)

June 04 2013, Poitiers



I1I: Non linear effects of the controlling force
amplitude on the eigenvalue estimation

UNIVERSITA DI PISA

Eigenvalue drift evaluated with sensitivity analysis is exact only
for infinitesimal perturbations.

A = Ao + aS(xg.yo) where X is the growth rate predicted by
the sensitivity analysis and A\g is the growth rate for the
uncontrolled flow.

We can retreive some non-linear effects due to a finite
amplitude of the forcing with the following procedure:

@ Application of the linearized drag force at a fixed position
(Xg = 0.15.y0 - O)

@ Computation of the forced baseflow for different
amplitudes («):
Ué . VU; + VPZ) — %VzUt’) =0F
V.U, =0

June 04 2013, Poitiers



UNIVERSITA DI PISA

amplitude on the eigenvalue estimation

Eigenvalue drift evaluated with sensitivity analysis is exact only
for infinitesimal perturbations.

A = Ao + aS(xg.yo) where X is the growth rate predicted by
the sensitivity analysis and A\ is the growth rate for the
uncontrolled flow.

We can retreive some non-linear effects due to a finite
amplitude of the forcing with the following procedure:

@ Application of the linearized drag force at a fixed position
(Xg = 0.15.y0 = 0)

@ Computation of the forced baseflow for different
amplitudes («):
Up - VU, + VP, — %Vng =0F
V.U, =0

© Linear stability analysis on the forced baseflow U,: — \

June 04 2013, Poitiers



Ill: Non linear effects of the controlling force @
. . - o UNIVERSITA DI P1sA
amplitude on the eigenvalue estimation
Re=90 Re=120
0.01 X : — —
Real(o) E 0.03} Pl
of - -\ Real(o) - , :
0.02t - - ,,,,, ........ ....... ]
—0.01 | Y N Rt « T i
< . . . ~ @ < \Z\I o I
. Linear \:\ : 001 ......... \\ ........ ...........
_0.02} N*on linear | .. \_.. ] \ R
> d=0.01 ol RN S .
5 d=0.02 . e - . A
00311 A g'_0.05 R SR N
1 4 " " n _001 — - . b
0 0.02 0.04 0.06 0.08 0.1 0 0.05 0.1 0.15 0.2
(04 o7
At moderate values of the force At h|gher Beynolds n.u.mber s
. . not possibile to stabilize the flow
amplitudes the non linear effects Vatrvine o and fixine the cvlinder
has a stabilizing effects .y. & & y
position
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03 ITA DI PISA

Sensitivity analysis at high Reynolds number:
Application to PIV data past a porous cylinder

S. Camarri, B. E. G. Fallenius, and J. H. M. Fransson, JFM 715, 2013.

Applications to flow analysis and control

Stability and sensitivity analysis of
experimental flow fields measured past a
porous cylinder

Funding by C.M. Lerici Foundation is gratefully acknowledged

June 04 2013, Poitiers



Configuration: flow around a porous
cylinder (uniform transpiration)

UNIVERSITA DI P1SA

Flow parameters:

1. Reference quantities: Uref, D
Y A 2. Re=3700

Transpiration parameter:

ref D | =100 * Vn/Uref

\
w

-6<I<2.57

\

\

\

\/

V. ->Transpiration Velocity (>0 -> blowing)

\




Experimental PIV database

* About 1000 instantaneous PIV snapshots for each Suction cases: small window

* Approximalety 2 snaphots per shedding cycle
* Spatial resolution: 62 X 62
* Measured quantities: U, V, planar Reynolds stresses

;7| porous

Camera Ij I-M-
=)
—@

Flow meter 0 1

Smoke generator

68

4

Blowing cases: small window + large window

d streamlines

y an

Streamwise velocit
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Stability analysis of mean flow fields o

For bluff-body flows correct prediction of the Strouhal
number of vortex shedding, associated to a nealy marginally

stable mode

Shown by DNS up to Re=600 (Leontini et al., JFM 2010)

Inspiring physical interpretation in terms of baseflow
modifications in a ROM framework (Noack et al.,JFM 2003)

Models to include Reynolds stresses (e.g. Reynolds & Hussain,
JFM 1972; Kitsios et al., JFM 2010) here neglected.




O bj e Cti Ve S UNIVERS;;;; VVDI Pisa

1. Verify whether or not global stability analysis, when applied
to the experimental mean flow fields at Re=3700, still
predicts the vortex shedding (VS) frequency with a sufficient
accuracy to highlight the effect of T

— Difficulties: noisy data, low spatial resolution, small measuring
window

2. Use the results of the stability analysis to extract information
about the large scale vortical structures from available
database

3. Provide a strategy to apply sensitivity analysis for flow
control using mean flow fields (similar work based on RANS
simulations in Meliga et al. PoF 2012).
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Stability analysis - procedure

O
2) Stability analysis: marginally stable

1) Computation of the time-averaged
direct mode ('=-2.57)

flow field (I'=-2.57)

/

.

/]

N7/l

\“‘jl ] ]
\!!!1!!‘

\\

0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5 ]
g small window: necessarily unrealistic
bc’s on global mode

o
71
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Sta bility analySiS - procedure UNIVERS;;:DIPISA

o
3) Computation of the associated Adjoint velocity field
adjoint mode (=-2.57)
— It "
A(CE,y) = ||u (xay)H U(CIZ,y)H
\{ direct velocity field
1F w 1 . | ‘
ol K i .
5l 3 \ i 2 3
ar " 0.5 :
or ﬁ B 0 N O
-0.4F -
0.6+ | 0.2 -0.51 A 1
08F % 1 03
1k /* ] 1!
0.5 1 1.5 2 2.5 }) 5 O
X . *
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Sta bility analySiS - procedure UNIVERS;;\»DIPISA

O
4) Localization of the overlapping between
direct and adjoint mode: core of the
instability, i.e. region of the baseflow which
mostly affect the estimation of the global
mode (Giannetti & Luchini, JFM)
Lambda (norm)
1, i
3
0.5 e 1
\
: - -2
N O = >
) =
geS===
-1t -
0.5 1 1.5 2 2.5
O .

73
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Sta bility analySiS - procedure UNIVERSZ;;DIPISA

3) Numerical estimation of A at Re=50 Adjoint velocity field
(Giannetti & Luchini, JFM 2007)
— |t 2
A(ZIZ, y) = |[u (337 y) H ||11<$, y)”
direct velocit ﬁeld‘ .
0.20 _
3
0.16 i
— 0.12
-2
0.08
0.04 1
0
0
O
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Sta bility analySiS - procedure UNIVERS;;:DIPISA

3) Numerical estimation of A at Re=400 Adjoint velocity field
(mean flow field)
(Camarri et al., JFM 2013) AL N
Az, y) = [[a" (z, y)|l[[a(z, y)|
direct velocity field .
25 ‘
1_ i
1 3
0.5 1
12
O,
0.5/ 1
-1t 0
0.5
O
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Stability analysis - results

r Resolution | Stabilized | Strouhal N. | Experimental St | Error (% )
-6 120X120 Y stable stable -
) 120X120 Y 0.290 - -
-3.86 120X120 Y 0.266 - -
-3.21 120X120 Y 0.255 - -
-2.57 120X120 Y 0.285 0.283 0.7%
-1.93 120X120 Y 0.267 0.241 9.7%
—1.37* | 120X120 Y 0.308 0.216 30.0%
0 120X120 Y 0.232 0.2 13.8%
+0.68 120X120 Y 0.218 0.190 12.8%
+1.93 120X120 Y 0.193 0.188 2.6%
+2.57 | 120X120 Y 0.1919 0.176 8.31%

UNIVERSITA DI P1SA
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Stability analysis - results

r Resolution | Stabilized | Strouhal N. | Experimental St | Error (% )
-6 120X120 Y stable stable -
) 120X120 Y 0.290 - -
-3.86 120X120 Y 0.266 - -
-3.21 120X120 Y 0.255 — -
-2.57 120X120 Y 0.285 0.283 0.7%
-1.93 120X120 Y 0.267 0.241 9.7%
—1.37" | 120X120 Y 0.308 0.216 30.0%
0 120X120 Y 0.232 0.2 13.8%
+0.68 120X120 Y 0.218 0.190 12.8%
+1.93 120X120 Y 0.193 0.188 2.6%
+2.57 | 120X120 Y 0.1919 0.176 8.31%

* Accuracy on the value of St within 14 %

UNIVERSITA DI P1SA
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Stability analysis - results

}\b\ﬂz. Dy

oY A= G
&8 &
& RN~ ¥ >

LY S
1343

UNIVERSITA DI P1SA

r Resolution | Stabilized | Strouhal N. | Experimental St | Error (% )
-6 120X120 Y stable stable

-5 120X120 Y 0.290 - |
-3.86 | 120X120 Y 0.266 - |
-3.21 | 120X120 Y 0.255 <cammm - i
2,57 | 120X120 Y 0.285 0.283 |
-1.93 || 120X120 Y 0.267 0.241 i
—1.37* | 120X120 Y 0.308 0.216 o

0 120X120 Y 0.232 0.2 ch
+0.68 | 120X120 Y 0.218 0.190 23
+1.93 | 120X120 Y 0.193 0.188 ;
+2.57% | 120X120 Y 0.1919 0.176 |

* Accuracy on the value of St within 14 %
* Variations of St vs I in agreement with experiments
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Stability

I Resolution | Stabilized | Strouha
-6 120X120 Y stabl
-5 120X120 Y 0.29C
-3.86 120X120 Y 0.26€
-3.21 120X120 Y 0.25%
-2.57 120X120 Y 0.288
-1.93 120X120 Y 0.267
—1.37* | 120X120 Y 0.308
0 120X120 Y 0.232
+0.68 120X120 Y 0.218
+1.93 120X120 Y 0.193
+2.57* 120X120 Y 0.1919

1_

0.57

~——

0.5 |

S =
<
\\\\\ \\ K\

&

B

0.216
0.2
0.190
0.188
0.176

> ——
= >

— (<

= m2.5
4 I2
E ‘

0.5

* Accuracy on the value of St within 14 %

* Variations of St vs I in agreement with experiments

UNIVERSITA DI P1SA

* Errors when the instability core approaches the boundaries of the measurement window

79
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Sensitivity analysis

UNIVERSITA DI P1sA

perturbation of the baseflow field

* Perturbed problem:

~

~

ocu-+u-VU,+ U,

V-u=0

- 1
-Vﬁ+Vp—EV2~ =0

« Result of the sensitivity analysis (adjoint stab. equations involved):

0o =

(MT,6Uy)

(o,

a)

MT =4 -Va™ —Via*-a"




Sensitivity of mode frequency a generic
baseflow modification

®
Case at Re=50 computed on the steady Sensitivity to a generic perturbation of

unstable solution of NS eqgs. the baseflow horizontal velocity

UNIVERSITA DI P1SA
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Sensitivity of mode frequency a generic
baseflow modification

®
Case at Re=400 computed on the mean Sensitivity to a generic perturbation of

flow field the baseflow horizontal velocity

UNIVERSITA DI P1SA
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Sensitivity of mode frequency a generic
baseflow modification

®
Case at Re=50 computed on the steady Sensitivity to a generic perturbation of

unstable solution of NS eqgs. the baseflow horizontal velocity
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Sensitivity of mode frequency a generic
baseflow modification

®
Case at Re=400 computed on the mean Sensitivity to a generic perturbation of

flow field the baseflow horizontal velocity

UNIVERSITA DI P1SA
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Focus on control: sensitivity to a generic
baseflow modification

Ry’
—

?

Z

* Verification of the sensitivity maps: control parameter I

Reference baseflow: Ub, Controlled baseflow: Ub,

B m——

E @ ‘ 0Up = Ub, — Ub,cs

Reference case: '=-1.93

reference St number: Different value of T
from experiments

Sor — (M™*,0Uy)
Estimation of controlled St _ °= (at, a)
Comparison with EXPs M* — & . Vit — Vi . aF
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Focus on control: sensitivity to a generic
baseflow modification

* Example of application:
e control parameter: transpiration I

* From PIV measurements the vatiation of baseflow is known

'\\\:\1. /)/(

-

AYARTAN

53/

&
f
@
])
" 1343

UNIVERSITA DI P1SA

* We use the map derived for =-1.93 to estimate variations of Strouhal number
thanks to the result of sensitivity analysis:

['  Estimated Strouhal N. Computed Strouhal N. Difference (%)
-5.0 0.333 0.290 14.8
-3.86 0.261 0.266 -1.9
-3.21 0.252 0.255 -1.2
-2.57 0.282 0.285 -1.0

0 0.223 0.232 -3.9
0.68 0.210 0.218 -3.7
1.93 0.161 0.193 -16.6
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Example of flow analysis based on stability
results: phase alignment of snapshots

UNIVERSITA DI P1SA

 Use of global modes to extraction of information on the large scale
wake vortices

— Global modes (stability analysis) are used to estimate the phase of
each snapshot with respect to VS

— Snapshots are aligned with respect to the VS phase
— Phase average carried out on the ordered database

e Phase estimation /Phase angle &, = wt
A , g . v
s (2,9,1) = Um + o (exp(ivt) G(z, y) + exp(~iwt) 0" (2, y))

Assumed velocity Glopal mod
decomposition Time averaged velocity obal moade




Phase alignment of snapshots

Extraction of information on the large scale wake vortices

— Global modes (stability analysis) are used to estimate the phase of
each snapshot with respect to VS

— Snapshots are aligned with respect to the VS phase
— Phase average carried out on the ordered database

e Phase estimation

A
Uys (2, Y, t) = Um + g(exp(iwt) U(zr,y) + exp(—iwt) 4" (z,y))

First strategy (only global mode nec.)

A A

(u*, a*)

&1 = Phase((r,u(z,y,t) — Up))

r=1u-—

Second strategy (adjoint based)

A
3 exp(i®r) = (0", u(z,y,t) — Um)




Phase alignment of snapshots
Tipical example (=-2.57)

SIIvy

UNIVERSITA DI P1SA

Phase &

Phase alignment + phase average (20 bins)

June 04 2013, Poitiers
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Phase alignment of snapshots
Tipical example (=-2.57)

Vorticity (colormap) and streamlines

- I s

TN/ R

r‘\‘\ /‘!‘\\\‘l ;
f

- Phase ¢
A 27 T

Phase alignment + phase average (20 bins)

90
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Phase alignment of snapshots
Blowing case ('=0)

UNIVERSITA DI P1SA

* Far and close windows: two different
experimental runs

* Sincronization is automatic because a
single global mode is used to identify
the phase

Phase averaged vorticity field

91
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On-going developments

Development passive wake controls using only experimental mean
flow fields and final implementation in experiments for a thick
plate (KTH Mechanics)

Use of adjoint methods for data reconstruction problems in support
to experiments on (KTH Mechanics):

— Separated wakes

— Controlled boundary layers
Applications to fully 3D mixers for microfluidics applications:
— Flow analysis

— Control applications oriented to mixing enhancement

Inclusion of Reynolds stresses as closure for local stability analysis
of experimental flow fields past wind turbines (EPFL Lausanne)

Application to free falling bluff bodies (Univ. Bordeaux)




Sensitivity analysis and control maps for fully 3D configs:
Application to a fully 3D T-Mixer

A. Fani, S. Camarri, and M. V. Salvetti, accepted, PoF 2013

Applications to flow analysis and control

Sensitivity analysis of the engulfment
instability in a fully 3D micro T-Mixer

June 04 2013, Poitiers




Micro T-mixer

UNIVERSITA DI PISA

T-mixer are very common devices in microfluidics, also used as junction
elements in complex micro-systems — = laminar regime (low Reynolds
numbers)

) p -,

¢—
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Motivations

UNIVERSITA DI PISA

Flow regimes as a function of Reynolds number

« Stratified flow Segregated flow in the outflow pipe

Rell < Vortex regime

« Engulfment

June 04 2013, Poitiers
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Motivations
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Flow regimes as a function of Reynolds number

o Stratified flow

Secondary flow in the outcoming
pipe: double pair of counter rotating
Rell < Vortex regime

vortices
« Engulfment

June 04 2013, Poitiers




Motivations

UNIVERSITA DI PISA

Flow regimes as a function of Reynolds number

o Stratified flow ;f
Rell < Vortex regime — |
« Engulfment — S——
% = SS=Sa-—.

Stationary and organized pattern of
vortical structures, which improve
mixing in the outflow pipe.

June 04 2013, Poitiers



Motivations

UNIVERSITA DI PISA

Flow regimes as a function of Reynolds number

o Stratified flow “:‘%‘“?
Rell « Vortex regime — |
» Engulfment S——
— SS=Sa-—.

High sensitivity of the engulfment to inflow boundary conditions
(Galletti et al.(2012)).

If the flow at the confluence is not fully developed engulfment occurs at
larger Reynolds numbers.

June 04 2013, Poitiers



Motivations

High sensitivity to inflow conditions, as well as to other
parameters, have been shown in the literature through
numerical simulations and experiments

No previous stability analysis of this configuration

In general, stability analysis of fully 3D flows are rare

Obijectives

Aim of the present work: to carry out a systematic
investigation by means of linear instability and sensitivity
analyses to explain high sensitivity to inflow conditions
Development of tools for 3D configurations

Investigation of the flow also by DNS




Flow configuration

UNIVERSITA DI PISA

Incompressible flow in a three dimensional T-mixer

L]

« W,/H=1.5and W,/W, =2 (same geometry as in Galletti et al. (2012))

2WoH
WO +H

* Referencelength: D, = (hydraulic diameter)

* Referencevelocity: U, bulk velocity of the inlet flow (fully developed

inflow condition)

June 04 2013, Poitiers



DNS investigation

Re=140: vortex regime

Two counter-rotating vortices in the
separated region at the confluence

Two pair of vortices observed in
the mixing channel

Vortex identified by A, criteria

June 04 2013, Poitiers



D N S i nve Sti gati O n UNIVEI;SITAD;PISA

Re=140: vortex regime

Normal vorticity component

June 04 2013, Poitiers



DNS investigation

Re=140: vortex regime

-0.15 -0.05 0.05 0.15 025 035 045 0.55

Arrow: in-plane velocities
Countour: normal to plane
velocity




DNS investigation S -

Re=160: engulfment

Two co-rotating vortices in
the mixer channel

The two vortices at the
confluence are characterized
by a tilt angle

June 04 2013, Poitiers



DNS investigation

Re=160: engulfment

Tilt angle
T [ [ [

-0.15 -0.05 0.05 0.15 025 035 0.45 0.55

0.8

0.6

0.4

0.2

0

-0.6 -0.4 -0.2 0.2 0.4 0.6

XOo
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SIIvy

DNS investigation

UNIVERSITA DI P1SA

Black line: vortex countour

I [
6-6-4-3-2-10123 450678 9101112

* Different intensity and
position of the vortices
Different interaction with
the wall vorticity

-0.6 -0.4 -0.2

0.2 0.4 0.€

o
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D NS inveSti gation UNIVEI;SITAKD;PISA

25 -2 -15 -1 05 0 05 15 2 25 3

0.8

Only two pair of vortices
last after the first part of N U8
the mixer

0.4

0.2

0—0.6 -0.4 -0.2

0.2 0.4 0.6

O
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DNS investigation S -

25 -2 -15 -1 05 0 05 1 15 2 25 3

Only two pair of vortices
last after the first part of N U8
the mixer

0.4

0.2

0

-0.6 -0.4 -0.2 0.2 0.4 0.6

O
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3D stability analysis

UNIVERSITA DI PISA

Re=140: just below the critical Reynolds number
evaluated with DNS

Stationary global mode
localized in the outflowing pipe

Isosurface of
the velocity
magnitude ||

Predicted growth rate
o = —1.5E-2
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3D stability analysis

Well defined vortical
structures

Point symmetry with
respect to the center of
the cross section

UNIVERSITA DI PISA

Contours: normal to plane velocity
Arrows: in-plane velocities

0.83

0
-0.625 -0.3 0 0.3 0.625
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3D stability analysis

The global mode is well
correlated with the S-shaped
engulfment pattern

UNIVERSITA DI PISA

Contours: normal to plane velocity
Arrows: in-plane velocities

0.83

0
-0.625 -0.3 0 0.3 0.625
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Instability core

UNIVERSITA DI PISA

[l ] [Ju*]|

Instability core_\Z
X

Y

The region where global and adjoint fields overlap is the
intersection of inlet and outflowing pipes.
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Sensitivity to perturbation of
the inlet velocity conditions

Following the approach of Marquet et al. (2008), we obtain:

+ — +
56 = (Py"m +®U" )ri

B (u*,u)

n: normal unit vector to the boundary pointing outside the flow domain
<*,*>. complex scalar product computed on the inlet surface

We observed that the flow is almost receptive only to a perturbation of the
component of velocity normal to the inflow boundary:

<Pb+n, (SUl >Fi

T T
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Sensitivity to perturbation of the
inlet velocity conditions

If we consider a perturbation of the form 8U; = U;6(y,z)n we can write:

6o = U;S(y,z)

S : sensitivity map of the eigenvalue with respect to a localized modification of the
wall normal component of the inflow velocity, computed on the inlet surface.

0.83 -0.7
| o070 ° A decrease of the inflow velocity
' at a generic location of the
_0.74 inflow section always implies a

negative 60
-0.76 + Influence of the location of the
velocity perturbation on the

-0.78 stabilizing/destabilizing effect

-0.8

0 0.3 0.625
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Application of the sensitivity map B

Velocity perturbation (U;) associated with a not fully developed inflow
condition

< Uniform profile
H

non-FD inlet
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Application of the sensitivity map .

Velocity perturbation (U;) associated with a not fully developed inflow
condition

0.83 0.1
d0<0
10.08
10-06 The global mode is more stable, i.e.
N 0.04 engulfment occurs at a larger
0.4 Reynolds number.
0.02 The results agrees with the
0 conclusions drawn in Galletti et al.
(2012)

-0.02

y

A stability analysis carried out on the base-flow with the non fully
developed inflow conditions has confirmed the results.
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Sensitivity maps for micro-jets at the T-mixer walls

UNIVERSITA DI PISA

The same sensitivity maps, computed on the mixer walls, can be used to
evaluate the effect of micro-jets on the instability.

Re=140

X

60- —_ UjetS

Suction (Uje; > 0) has a destabilizing effect where S is positive valued
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On-going developments

Development passive wake controls using only experimental mean
flow fields and final implementation in experiments for a thick
plate (KTH Mechanics)

Use of adjoint methods for data reconstruction problems in support
to experiments on (KTH Mechanics):

— Separated wakes

— Controlled boundary layers
Applications to fully 3D mixers for microfluidics applications:
— Flow analysis

— Control applications oriented to mixing enhancement

Inclusion of Reynolds stresses as closure for local stability analysis
of experimental flow fields past wind turbines (EPFL Lausanne)

Application to free falling bluff bodies (Univ. Bordeaux)




