
Discrete Input/Output Maps
Linear Quadratic Programming

Two Approaches to Optimal Control
of Linearized Navier-Stokes Equations

I. Direct Discretization of the Input to Output Behavior and
II. Generalized Riccati Equations

Jan Heiland, joint with Volker Mehrmann
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Physical system

Influenced by an
input → u ∈ U
Observed via sensors
→ y ∈ Y output

Defines a map:
G : u 7→ y

Motivation for the use of linear I/O maps:

Input/Output behavior may be comparatively simple

Control acts local in time
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Bounded linear mappings G : U → Y can represent linear
systems with distributed control.

For finite dimensional z(t), e.g., for a z : (0,T ] → RN

satisfying the linear time-invariant system:

Eż(t)− Az(t) = Bu(t), on (0,T ], z(0) = z0 ∈ RN

y(t) = Cz(t)

with an in input u(t) ∈ RNu , output y(t) ∈ RNy , E ,A ∈ RN,N

and matrices B and C of appropriate size, we have a formula
for G:
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Eż(t)− Az(t) = Bu(t)
y(t) = Cz(t)

For the finite dimensional case we have for t ∈ [0,T ]

y(t) = C
[∫ t

0
eEDA(t−s)EDBu(s)ds+

+ (I − EDE )
ν−1∑
i=0

(EAD)iADBu(i)(t)
]
,

provided

DAE calculus as differentiation index ν and Drazin inverse ED

(E ,A) is a regular, commuting matrix pair

u sufficiently smooth and consistent

z0 = 0
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Physical system

Influenced by an
input → u ∈ U
Observed via sensors
→ y ∈ Y output

Defines a map:
G : u 7→ y

Basic Assumptions and Notation:

U ,Y Hilbert-spaces of the signals

G : U → Y a linear input/output map of a given system
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Consider finite dimensional subspaces

Uh = span{µ1, . . . , µp} ⊂ U ,

Yh = span{ν1, . . . , νq} ⊂ Y,

orthogonal projectors PUh
,PYh

and signal approximations

uh =
[
u1 · · · up

] µ1
...

µp

 =

p∑
j=1

ujµj ∈ Uh

and

yh =
[
y1 · · · yq

] ν1
...

νp

 =

q∑
i=1

yiνi ∈ Yh.
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We are looking for an approximation Gh := PYh
GPUh

:

For uh ∈ Uh, we have Guh ∈ Y and

PYh
Guh =

q∑
i=1

(νi ,Guh)Yνi

provided {νi} is an orthogonal basis of Yh.

And with uh =
∑p

j=1 ujµj we get

Ghuh =

q∑
i=1

p∑
j=1

uj(νi ,Gµj)Yνi

.
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Thus, we define a finite dimensional approximation to G via

Gh : Uh → Yhu1
...

up

 7→
y1

...
yq

 = Gh

u1
...

up

 ,

with Gh =

[
(νi ,Gµj)Y

]
i=1,...,q
j=1,...,p

.

Lemma[
Uh → U , Yh → Y and G bounded

]
⇒ Gh → G
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Linearized Navier-Stokes equation for v and p

∂tv + (v∞ · ∇)v + (v · ∇)v∞ +∇p− 1

Re
4v =(v∞ · ∇)v∞ + Bu,

∇ · v =0,

y =C

[
v

p

]
.

Parameters: Re and reference velocity v∞

Spatial discretization yields a descriptor system[
I 0
0 0

]
d

dt

[
v
p

]
−

[
A JT

1

J2 Q

] [
v
p

]
=

[
Bu
0

]
,

y = C

[
v
p

]
.

Jan Heiland, joint with Volker Mehrmann Direct Discretization of I/O Maps



Discrete Input/Output Maps
Linear Quadratic Programming

The General Framework
Application to Flow Control

[
I 0
0 0

]
d
dt

[
v
p

]
−

[
A JT

1

J2 Q

] [
v
p

]
=

[
Bu
0

]

If

[
A− λI JT

1

J2 Q

]
is invertible for a λ ∈ C, we can apply the

solution formula for linear descriptor systems.

In particular, the corresponding I/O map G is well-defined if

Necessary Regularity of the Input Signals

u differentiable (general case) or

u continuous, if J1 = J2 and Q is a minimal stabilization, or
the output does not depend on the pressure p
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Test Case - Driven cavity

Modelled by Navier-Stokes
Equations linearized about the
steady state solution v0

Re = 3333, Q1-P0 mixed finite
elements on uniform 256× 256 grid
[IFISS]

Simulation interval (0, 0.1] starting
from v0

2D input signal in domain of
control Ωc

y(t) - velocity in domain of
observation Ωm, spatially avaraged
in x1-direction
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Problem: given a target output y∗ ∈ Y, find u∗ ∈ U that solves:

‖y∗ − Gu‖2Y + α‖u‖2U → min

Approach: Use the matrix approximation Gh to find an
approximation u∗h ∈ Uh

Testcase Driven Cavity

dim Uh = dim Yh = 34 · 16

34 piecewise linear (space) × 16 Haar wavelets (time)

→ 34 · 16 offline solves: ∼ 10h on desktop PC

→ Online time to solve the optimization problem: 0.034s
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Application example for

y∗ ≡
[
1
0

]
.
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Application example for

y∗ ≡
[
0
1

]
.
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Some final remarks

Approach seems feasible for distributed control of linearized
flow equations
→ Applicability in iterative schemes

Further model reduction by higher order SVD succesfully
tested for heat conduction

And a referee wanted to know . . .
“. . . what is the gain if compared to the standard approach”?
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“. . . what is the gain if compared to the standard approach”?

This is actually three questions:

1. What is the standard approach?
For linear systems? LQR - Linear-Quadratic Regulator!

2. What is the gain?
It’s computable and very fast in the online computation.

3. How do both approaches compete?
No answer here, since the LQR (and other standard

methods for LQ problems) are not feasible for the chosen
setup.
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The Linear Quadratic Programming Problem:

Find an input u, such that a quadratic cost specification

J (y , u) := y(T )TMy(T )T +

∫ T

0
y(t)TWy(t) + u(t)TRu(t)dt

becomes minimal – subject to a linear system.

Eż(t)− Az(t) = Bu(t), on (0,T ), z(0) = z0,

y(t) = Cz(t),

with weighting matrices M, W and R symmetric positive definite
and R invertible.
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The Linear Quadratic Programming Problem:

Find an input u, such that a quadratic cost specification

J (y , u) := y(T )TMy(T )T +

∫ T

0
y(t)TWy(t) + u(t)TRu(t)dt

becomes minimal – subject to a linear system

.

Eż(t)− Az(t) = Bu(t), on (0,T ), z(0) = z0,

y(t) = Cz(t),

with weighting matrices M, W and R symmetric positive definite
and R invertible.
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J (y , u) → minu

s.t. a linear system

1. What gives the gain?

The system is replaced G : u 7→ y

and the optimization becomes unconstrained

J (y , u), s.t. a system → J (Gu, u) =: Ĵ (u)

Now optimization is comparatively easy, in particular in finite
dimensions

But in general G is not readily available
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J (y , u) → minu

s.t. Eż(t)− Az(t)− Bu(t) = 0

2. Standard approaches solve the optimality system on (0,T):

Eż − Az − Bu = 0, z(0) = z0,

−ET λ̇− ATλ + Wz = 0, λ(T ) = −Mz(T ), (adjEqn)

−BTλ + Ru = 0,

M,W ,R from the cost functional,
e.g. via the Riccati approach

Standard case (E=I):
The above optimality system has a unique

solution and the optimal input u is given via
the feedback law u = R−1BTPz , where P is
the unique solution to the Riccati equation:

Ṗ + ATP + PA− PBR−1BTP −W = 0.
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. . . s.t. Eż(t)− Az(t)− Bu(t) = 0

Our case, for the sake of brevity y := v and J1 = J2 = J:

Minimize

J (v , u) := v(T )TMv(T )T +

∫ T

0
v(t)TWv(t) + u(t)TRu(t)dt

subject to linearized Navier-Stokes equations[
I 0
0 0

] [
v̇
ṗ

]
−

[
A JT

J 0

] [
v
p

]
−

[
B1

0

]
u =

[
0
0

]
, v(0) = v0.

Note that, “E”=

[
I 0
0 0

]
is not invertible.
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3. Why the standard approaches do not work?

DAE-structure: “E” is singular

one may use Helmholtz projection to reformulate the NSE as a
standard ODE
this is not very feasible for large systems and numerically
unstable

High-dimensionality

For the 2D driven cavity example, the optimality system is a
boundary value problem of size 106

e.g., a solution by finite differences on N discrete time
instances, leads to a system of N ∗ 106 equations
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Our proposal to tackle this problem:

keep the DAE structure, as it ensures stability and physical
validity of the solution

Generalize the LQR approach to the system class under
consideration

Hope for efficient algorithms for the solution of large-scale
Riccati equations, that are investigated in the group of Peter
Benner at the Max-Planck Institute in Magdeburg, Germany
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Voilá, with the Riccati decoupling[
λ1

λ2

]
=

[
X Y T

Y 0

] [
I 0
0 0

] [
v
p

]
we can state that

Lemma:

The optimal input is given by u = R−1BTXv ,
where X is the unique solution of

Ẋ + ATX + XA + XBTR−1BX−
−W + JTY + Y T J = 0,

XJT = 0, JX = 0,

X (T ) = −M.
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What have we got – we haven’t solved the optimization problem:

The problem is no more a boundary value problem, but an
initial value problem

The problem is made accessible for so called low-rank ADI
algorithms, investigated in the group of Benner

Having kept the DAE structure, we can numerically control
the validity of the solution

If one solves the problem, one obtains not only the solution u
but the optimal feedback law
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Summary:

Optimal control of linearized Navier-Stokes equation

Direct discretization of the corresponding I/O behavior

Standard LQ-approaches are not applicable

A possible generalization is obtained via a Riccati DAE ansatz

Future task: numerical solution of the Riccati DAE

Future task: application in nonlinear problems

Jan Heiland, joint with Volker Mehrmann Direct Discretization of I/O Maps



Discrete Input/Output Maps
Linear Quadratic Programming

LQ for Navier-Stokes Equations
Generalized Riccati Decoupling

Thanks to Volker Mehrmann and

thank you for your attention.

For suggestions and questions please contact me

heiland@math.tu-berlin.de
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