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Angelo Iollo

Low-order model construction

Discrete instantaneous velocity expanded in terms of empirical eingenmodes:

u(x, t) = u(x) +
PNr

n=1 an(t)φn(x)

where u(x) is a reference velocity field.
Eigenmodes φn(x) are found by proper orthogonal decomposition (POD) using the
“snapshots method” of Sirovich (1987).
Limited number of POD modes, Nr , is used in the representation of velocity fields
(snapshots) −→ they are the modes giving the main contribution to the flow energy.
Galerkin projection of the Navier-Stokes equations over the retained POD modes
leading to the low-order model:

ȧr(t) = Ar + Ckrak(t) − Bksrak(t)as(t)

ar(0) = (u(x, 0) − u(x), φr)

Coefficient Bksr derives directly from the Galerkin projection of the non-linear terms in
the Navier-Stokes equations
Terms Ar and Ckr are calibrated (Galletti et al., JFM, 2004 and Galletti et al., EJM/B
Fluids, 2006)
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Tumor growth modeling

PDE models: they are all parametric models

Parameters take into account microscopic and 
mesoscopic scales phenomena that we do not model 
directly

As consequence, parameters do not have a biological 
meaning and can not be measured; they need to be 
identified.



Inverse problems

Identification:

∂tY(x; t) = f(Y, P, π) The model describes the evolution: non-
observables and parameters to be determined!

Imi =Im(x; ti) The data: in general, medical images

Ei = Imi -Y(x; ti) We want to minimize the error beween 
the simulated history and measurements



The model

0.1 Introduction

In this report the results of four inverse problems are discussed. The aim

of theese problems is to identify several parameters of a system (avascular

tuomour growth) that is described by a simplified 2D Darcy-type model.

In the first problem we try to identify porosity, in the second one the poros-

ity and the hypoxia function, supposed constant as in a simplified logistic

evolution, in the third one the porosity and the hypoxia function, with less

informations. In the fourth one, we try to identify completely a more com-

plex Stokes-type flow using a Darcy-type model.

The informations that we consider given are taken from direct numerical

simulations and vary in each problem and in each problem there are several

interesting aspects, that we will point out in the following.

0.2 The model

In this section we briefly introduce the simplified 2D Darcy-type model, that

describes a two species flow in a porous isotropic medium.

The equations governing the evolution of the system are:

∂P

∂t
+ ∇ · (vP ) = (2γ − 1)P (1)

∂Q

∂t
+ ∇ · (vQ) = (1 − γ)P (2)

∇ · (k∇Π) = −γP (3)

v = −k∇Π (4)

−∇ · (D∇C) = −αPC − λC (5)

where P is the concentration of proliferating cells, Q of quiescent cells, γ is

the hypoxia function: in all our inverse problems we deal with this function

instead of the concentration of oxygen. As a matter of fact, in terms of

evolution we can reason about hypoxia and apoptosis functions instead of

concentration of oxygen or acidity an so on, and this is just because the

proliferating process is governed by theese functions, at first instance. v is

1

Proliferating cells density

Dead cells density

Saturation,  “mitosis equation”

Mechanical closure

Nutrient equation

The velocity field v is equal for every cellular phenotype phase (passive mo-

tion assumption), γ is the hypoxia function and it is a scalar function of

the oxygen concentration. We will define it more precisely later on. The

healthy cells density is denoted by S and, since their metabolism is not as

fast as the metabolism of proliferating cells, the equation for S reduces to an

homogeneous transport equation, as explained in [3]. We use an hypothesis

of saturated flow, (see [9, 8]), that is to say P + Q + S = 1 in every point of

the space domain, for every time.

This hypothesis allows us to derive an equation for the divergence of the

velocity field; we obtain:

∇ · v = γP. (3)

We observe that, from a physical point of view, this is equivalent to state

that the mitosis acts as volume source for our flow. From a mechanical point

of view it is not sufficient to fix the divergence of the velocity field; in order to

close our problem we have to assign at least a law for the curl of the velocity.

Several kinds of closures have been proposed in literature, see [23, 8]. We

decide to use a Darcy-type law, that describes quasi-steady flows in porous

media, with a variable porosity:

v = −k(P, Q)∇Π. (4)

The scalar function Π plays the role of a pressure, and k is a porosity field,

that is a function of P and Q. The most simple, phenomenological law is a

linear mapping of the sum (P + Q), so that we have:

k = k1 + (k2 − k1)(P + Q), (5)

where k1 represents the constant porosity of the healthy tissue and k2 is the

porosity of the tumoral tissue.

After defining the mechanics of our system, we have to specify the nutrient

equations that in our case reduces to a reaction-diffusion equation for the

oxygen concentration; we will make the assumpion of quasi-steady state:

∇ · (D(P, Q)∇C) = αPC + λC, (6)
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where α is the oxygen consumption rate for the proliferating cells, λ is the

oxygen consumption coefficient of healthy tissue and D(P, Q) is the diffusiv-

ity. Again, the diffusivity can be written as a linear mapping of P + Q:

D = Dmax − K(P + Q). (7)

This phenomenological law says that the diffusion of the oxygen is different in

the healthy tissue and in the tumoral tissue. The hypoxia function γ simply

states that, when the concentration of oxygen is under a certain threshold

the cells become quiescent and, in this simplified two species model, become

necrotic. The definition of γ is a regularization of the unit step:

γ =
1 + tanh(R(C − Chyp))

2
, (8)

where R is a coefficient and Chyp is the hypoxia threshold.

We have to impose boundary conditions for both the oxygen and the pres-

sure fields. We can choose, according to the physics of our system Dirichlet

boundary conditions or Neumann boundary conditions.

Imposing Neumann conditions on the pressure field is equivalent, from a

physical point of view, to impose that there is no mass leaving our domain.

In order to have a well posed problem we need to modify the equation for

the divergence of the velocity. In particular the divergence must be a zero

average scalar quantity, so that we can write:

∇ · v = γ(C)P −

∫

Ω γP dΩ
∫

Ω 1 − Y dΩ
(1 − Y ). (9)

From a mechanical point of view this is equivalent to impose that the growth

of the tumour causes a compression of the healthy tissue. Therefore the

healthy tissue equation can be no longer considered, in this case, an homo-

geneous transport equation.

The direct problem have been solved numerically by means of a direct

numerical simulation.

The various equations appearing in the mathematical model were discretized

on a cartesian mesh using a finite volume approach. Advection equations

are solved numerically with a WENO scheme [20, 15]. To improve numerical
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Porosity

Diffusivity

Hypoxia function

Y= P+Q



Inverse problems:

1) Reduced approach: compute a database of solutions, 
extract “important” structures and minimize residuals

Compute a 
database, varying 

both P, π

Extract coherent 
structures by means 

of POD

0.1 Sensitivity and least square techniques

for inverse problem in tumor growth mod-

eling

In the literature several tumor growth models have been proposed in order

to describe the most relevant phenomena concerned in the pathology, such

as tumor shape, localization and growth rate. Among them continuous-type

models aim at describing the macroscopic evolution of the tissue without

considering the mesoscopic and the microscopic scales involved. The effects

of the latters are lumped into a certain number of parameters, so that all

these models result in a system of parametric PDEs.

In order to build a prognosis tool the parameters and the initial conditions

have to be sought in such a way that the simulated history fits approximately

the real evolution of the phenomenon for the available data. Then inverse

problems are set up in order to recover the parameters and the initial condi-

tions, the data coming from medical imagery.

In this talk, a sensitivity approach is discussed and compared with a least

square approach. These approaches rely on a regularization of the model into

a POD space, that reduces the number of unknowns and tackle some under-

determinations.

Realistic cases are detailed. The techniques proposed are used to study

the evolution of methastatic nodules in lungs, the data set being a certain

number of CT scans.

E2

T =
∑

i

E2

i =
∑

i

∫
Ω

(Imi − Y (x; ti))
2 dx (1)

∂E2
T

∂πj

= 2
∑

i

∫
Ω

Ei

∂Y

∂πj

dx (2)

∂tY = f(Y, P, π); (πj , Pr) = arg min
P̃ ,π̃

{
∑

i

‖f(Imi, P̃ , π̃) − ∂tY ‖2} (3)

1

Offline stage: you 
do it once

Inject informations in 
the model: 
1) Equations are 
satisfied
2) The model fits at 
best the data 



Inverse problems:

The POD expansions are sobstituted into the 
equations written for the observable Y

The evolution for the observable is derived:

∂Y

∂t
+ ∇ · (vY ) = γP (13)

∇ · v = γP (14)

k(Y )∇∧ v = ∇k(Y ) ∧ v (15)

∂C

∂t
−∇ · (D(Y )∇C) = −αPC − λC, (16)

Unknowns:
v, P, C (17)

k2/k1, Dmax, K, α, λ, Chyp (18)

Inverse problem equations:

Ẏ + av
i∇ · (Y φv

i ) = aγP
j φ(γP )

j (19)
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Unknowns:

The evolution for the observable is derived:
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Parameters

The evolution for the observable is derived:
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i , aC

i , av
i , a

γP
i (24)

3

Expansion Coefficients:
functions of time only



Inverse problems:

In the equation for the observable the time derivative 
dY/dt is unknown

To solve the problem the time derivative is 
approximated by interpolation

Several type of interpolation have been tested:

where δ is a suitable positive number. In all the following simulations the

value δ = 0.1 was adopted. It should be noted that this choice still allows

the procedure to identify solutions that are very different with respect to the

solution of the data base.

4.2 Time interpolation

The hypothesis that two subsequent snapshots are close in time, or, in other

words, that the time between two snapshots is small if it is compared with

the charateristic evolution time of the phenomenon, is very optimistic. In

order to relax this hypothesis, instead of using first order finite differences,

that is equivalent to perform a linear interpolation between snapshots, a

different kind of interpolation can be used. An higher order finite difference

scheme, equivalent to a polynomial interpolation of between the snapshots,

could be envisaged. But this would require a large number of snashots. As an

alternative, still assuming that only two images are available, an additional

hypothesis about the growth rate could be retained. Here, we consider two

cases. In the case of exponential growth we write:

Ẏ ≈ Aexp{ζt} + Bexp{−ζt} = f(ζ), (50)

where A, B are chosen in such a way that we two available snapshots are in-

terpolated. One parameter, ζ , is let free and enters the residual minimization

process. The first equation of the system (29-32) becomes:

f(ζ) + ∇ · (a(v)
i φ(v)

i
Y ) = a(γP )

i φ(γP )
i . (51)

In the case of a logistic-type growth we proceed in a similar way. We take

Y ≈ AG(ω, σ) + BG(−ω,−σ) (52)

where

G(ω, σ) =
ωeωt

ω − σeωt
(53)

As before A and B are accomodates such that the snapshots are interpolated.

In this case, however, we are left with two free parameters (ω and σ) that ar

found within the residual minimization process.
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Linear:

Exponential:

Logistic:

The evolution for the observable is derived:

∂Y

∂t
+ ∇ · (vY ) = γP (13)

∇ · v = γP (14)

k(Y )∇∧ v = ∇k(Y ) ∧ v (15)

∂C

∂t
−∇ · (D(Y )∇C) = −αPC − λC, (16)

Unknowns:
v, P, C (17)

k2/k1, Dmax, K, α, λ, Chyp (18)

Inverse problem equations:

Ẏ + av
i∇ · (Y φv

i ) = aγP
j φγP

j (19)

av
i∇ · (φv

i ) = aγP
j φγP

j (20)

k(Y )av
i∇ ∧ φv

i = ∇k(Y ) ∧ av
i φ

v
i (21)

ȧC
i φC

i − aC
i ∇ · (K(Y )∇φC

i ) = −αap
i a

C
i φC

i φP
i − λaC

i φC
i (22)

2aγP
i φγP

i = 1 + tanh(R(aC
i φC

i − Chyp)) (23)

aP
i , aC

i , av
i , a

γP
i (24)

(

a(·)
i (t0), πj

)

= argmin {F} = argmin

{

∑

l

R2
l

}

(25)

Y = tA + (1 − t)B (26)

3



Inverse problems:

Solution of the non-linear system written at the time t, 
when Y is observed: minimization of the residual

The evolution for the observable is derived:
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Residual is minimized using a Newton solver 
(Levemberg-Marquardt). 

Condition on the variable P are imposed via a 
penalisation techinque.

Reaction-Diffusion equation for the oxygen is critical 
since the variable is not observed, but entirely 
regularized.



Inverse problems:

2) Sensitivity: minimization of the error with respect to 
parameters and non-observed quantities. 

Set P0, π0 compute Ei
ET<ε

? 

Yes

No
see what the effect 

of changing 
parameters is; 

update parameters.

0.1 Sensitivity and least square techniques

for inverse problem in tumor growth mod-

eling

In the literature several tumor growth models have been proposed in order

to describe the most relevant phenomena concerned in the pathology, such

as tumor shape, localization and growth rate. Among them continuous-type

models aim at describing the macroscopic evolution of the tissue without

considering the mesoscopic and the microscopic scales involved. The effects

of the latters are lumped into a certain number of parameters, so that all

these models result in a system of parametric PDEs.

In order to build a prognosis tool the parameters and the initial conditions

have to be sought in such a way that the simulated history fits approximately

the real evolution of the phenomenon for the available data. Then inverse

problems are set up in order to recover the parameters and the initial condi-

tions, the data coming from medical imagery.

In this talk, a sensitivity approach is discussed and compared with a least

square approach. These approaches rely on a regularization of the model into

a POD space, that reduces the number of unknowns and tackle some under-

determinations.

Realistic cases are detailed. The techniques proposed are used to study

the evolution of methastatic nodules in lungs, the data set being a certain

number of CT scans.

E
2

T
=

∑
i

E
2

i
=

∑
i

∫
Ω
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Sensitivity: quantifies changes in the solution for 
a small perturbation of the j-th parameter



Slow growth nodule

Metastatic nodules in lungs: slow dynamics

Given two, or three images, can we recover the 
following scans?



Computational set up:

Resolution: 200 x 200, domain [0,8]x[0,8]

Finite Volume schemes on cartesian mesh;
• WENO 5 scheme for transport;
• RK2 scheme for time discretization;

Level set methods;

Control set:
Parameters + Initial Condition for P

P is supposed to be an external layer: P0 =A exp(-δφ2)

Time: 2 min on one CPU

Slow growth nodule



Tumor density distribution. Active part of the tumor

Isocontours of nutrients

Slow growth nodule



Slow growth nodule
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Fig. 11. Scans: a) November 2005, b) October 2007, c) July 2008, d) April 2009
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Fig. 12. POD modes for the oxygen field, Case I: a) First mode, b) Third mode c) Fith mode.

the concentration of proliferating cells and the oxygen distribution in the tissue. In
Fig.12 some eigenmodes of the oxygen field are represented. The modes are regular
and the structures in the oxygen field due to the consumption of the tumor may
be recognized. In Fig.13 the proliferating cells density modes are represented. In
all the modes the shape of the initial tumor may be recognized and a wave-kind of
behavior appears to render the growth and the tumor invasion of the sorrounding
tissue.

Initially the proportion of proliferating cells is fixed to P = 1 on the tumor
support, that is, at the beginning the tumor is totally proliferating. This value is of
course not always realistic, but the results of the identification proved to be weakly
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Scan: Simulation:

Error is essentially a shape error:

Slow growth nodule



Two nodules case
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How far we can represent a PDE solution by POD ?

Angelo Iollo

Amélioration des modèles réduits

1 - Problème base POD, Φn(x) : mauvaise représentation écoulements 3D turbulents
hors base de données
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Coherence by optimal mass transport

How to displace a certain amount of mass in such a way that a 
cost functional is minimized?

* Histoire de l’Academie de Science de Paris: “Mémoire sur la théorie des déblais remblais”

Ω0 Ω1

X(ξ)

x(ξ) =arg min{C(X(ξ))}



Mathematical formulation

1 Introduction

The optimal mass transfer problem, also known as the Monge-Kantorovich

problem (see [1] and [2]), consists in finding a plan to transport a certain

quantity of mass from a starting configuration to a final one, minimizing a

given cost functional. Optimal transport theory has recently been revived and

developed providing theoretical tools for the analysis of phenomena such as

geophysical flows [3], nonlinear electrodynamics [3],[4],[5], collapsing sand piles

[6], crowd motion [7]. An exhaustive overview of the theory can be found in

[8],[9],[10].

In this work we focus on the numerical solution of the L2 optimal mass transfer

problem in Rd, where d is the number of space dimensions. Let ρ0(ξ) and ρ1(x)

be two non-negative scalar (density) functions with compact support Ω0 and

Ω1, respectively. We assume that

∫

Ω0

ρ0(ξ) dξ =
∫

Ω1

ρ1(x) dx = 1. (1)

Let x = X(ξ) be a smooth one-to-one map taking Ω0 onto Ω1 that verifies the

jacobian equation

det (∇ξX) ρ1(X(ξ)) = ρ0(ξ). (2)

As a consequence, we have that ∀Ω ⊆ Ω0

∫

Ω
ρ0(ξ) dξ =

∫

X(Ω)
ρ1(x) dx. (3)

The jacobian equation (2) has many admissible solutions. Among all these

mappings, the objective of this paper is to describe a lagrangian method to

find X∗(ξ) such that

∫

Ω0

ρ0(ξ)‖X∗(ξ)− ξ‖2 dξ ≤
∫

Ω0

ρ0(ξ)‖X(ξ)− ξ‖2 dξ (4)

for all smooth one-to-one mappings X(ξ). This functional measures the cost

of the mass transport by a weighted square distance function. Other classes

of optimal transport problems can be defined by introducing different norms

instead of the above. We concentrate on the L2 case because of its links with

continuum mechanics [3] and since the solution of this problem finds applica-

tions in oceanography [11], shape optimization [12], computer vision [13] and
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are two density distributions such that:

mass is conserved

if and only if X is one-to-one

Infinitely many X exists.  Among them we look for the 
optimal one:
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Mathematical formulation

Theorem: the solution of this problem exists unique, 
and has this form:

image processing [14].

Mainly two classes of methods to solve this problem in realistic applications

were proposed. One idea (see [15]) is to look for a mapping between the initial

and final condition by solving an appropriate partial differential equation up

to steady state. The computational cost of this approach is that of finding the

asymptotic solution of d transport equations. The main drawback is that, apart

from accuracy, the convergence rate to the asymptotic solution may be poor.

A different path is followed in [16], where a time-like variable is introduced

and the space-time mapping between the initial and final mass distribution is

found by a saddle point method that requires the solution of a Poisson problem

in space and time at each iteration. The merit of the latter formulation is

to show the links between the least action principle and the optimal mass

transfer problem. From the computational view point, however, the time-like

variable introduces additional unknowns to be solved for. In the next sections

we will summarize the formulation at the base of these two approaches in

order to introduce an alternative solution method where no partial differential

equations are numerically solved to approximate the optimal map.

2 The Angenent-Haker-Tannenbaum (AHT) gradient flow

Let us recall a basic theoretical result on the L2 optimal mass transfer problem

(see [17],[10],[18]): there is a unique optimal map X∗(ξ) characterized as the

unique map transferring ρ0(ξ) to ρ1(x) which can be written as the gradient

of some convex function Ψ(ξ):

X∗(ξ) = ∇ξ Ψ(ξ); (5)

in other words if we find a map that can be expressed as in the equation

above and that satisfies equation (2), than this is the optimal map. Such a

consideration is at the base of the AHT method [15].

In the following we recast AHT method in a continuum mechanics framework.

Let x = X (ξ, t) be a smooth one-to-one mapping such that X (ξ, 0) = Xi(ξ)

and let the initial map Xi(ξ) satisfy the jacobian equation (2). The objective is

to make this initial map evolve toward the optimal map by a gradient method,

3

where the potential is a convex function (a.e.)

This problem can be formulated as the minimum of an 
action:

level. Therefore if the initial map is far from the minimum and many gradi-

ent step iterations are needed, the error in mass conservation may be large.

More recently, in [19], it was proposed to directly solve the minimization of (6)

under mass conservation constraint, by a sequential quadratic programming

approach. This method, however, leads to an optimization problem of the size

of the spatial grid resolution.

3 Action minimization

In [20] it is shown that the optimal mass transfer problem is equivalent to

the flow of a pressureless ideal compressible fluid. Consider a time-dependent

density function ρ(x, τ) defined in Rd such that

ρ(x, 0) = ρ0(x) (19)

and

ρ(x, T ) = ρ1(x). (20)

The variable τ stands now for time and it plays a different role compared to

the parameter t of the previous section. It can be shown (see [20]) that the

optimal mass transfer problem is equivalent to the minimization with respect

to U(x, τ) of the time integral of the kinetic energy (the action) associated to

the transport:

J =
1

2

∫ T

0

∫

Rd
ρ(x, τ)‖U(x, τ)‖2 dxdτ, (21)

subject to equations (11), (19), (20).

Introducing a space-time lagrange multiplier ψ(x, τ), the Euler-Lagrange equa-

tions for the constrained minimum of J are

∂τψ + U ·∇ψ =
‖U‖2

2
, (22)

U = ∇ψ. (23)

and because initial and final conditions are given for ρ(x, τ), no conditions are

imposed on ψ(x, τ).

In [16], the action minimization problem under constraint is solved by the

Uzawa algorithm. The main disadvantage of this approach is that the dis-
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Enforcing mass conservation

without altering the distribution ρ1(x).

Our plan is therefore to compute the variation of the cost functional

I =
∫

Ω0

ρ0(ξ)‖X (ξ, t)− ξ‖2 dξ, (6)

with respect to t. To do so, we need some preliminary steps. We introduce

the inverse mapping ξ = Y (x, t), that, for given value of the parameter t and

space coordinate x ∈ Ω1 retrieves the corresponding ξ ∈ Ω0. In other words

x = X (Y (x, t), t) and hence

∇ξX = (∇xY )−1, (7)

∂tY + U ·∇xY = 0, (8)

where U(x, t) = ∂tX (ξ, t). If X (ξ, t) has to take Ω0 onto Ω1, ∀t ∈ R+, then

∀x ∈ ∂Ω1 and ∀t ∈ R+, U(x, t) · n = 0, where n is the normal to ∂Ω1.

As an initial condition for the inverse map we take Y (x, 0) = Yi(ξ) with

Yi(x) = X−1
i (x). Let also assume that x = X (ξ, t) is mass preserving ∀t ∈ R+

so that

det (∇xY (x, t)) ρ0(Y (x, t)) = ρ(x), (9)

and

det (∇xY (x, 0)) ρ0(Y (x, 0)) = ρ1(x), (10)

thanks to equation (7). On the other hand, mass conservation can be written

also

∂tρ+∇x · (ρU) = 0, (11)

with initial condition ρ(x, 0) = ρ1(x).

The derivative of the cost functional with respect to t is then

∂tI =

d

dt

∫

Ω0

ρ0(ξ)
[

‖X (ξ, t)‖2 − 2X (ξ, t) · ξ
]

dξ =

d

dt

∫

Ω1

ρ0(Y (x, t))‖x‖2det (∇xY (x, t)) dx− 2
∫

Ω0

ρ0(ξ)∂tX (ξ, t) · ξdξ =

d

dt

∫

Ω1

ρ(x, t) ‖x‖2 dx− 2
∫

Ω1

ρ(x, t) U(x, t) · Y (x, t) dx.

(12)

The vector field Y (x, t) can be decomposed as the sum of a divergence-free

vector field Yω(x, t) and the gradient of a scalar potential Ψ(x, t), according

4

by means of a lagrangian multiplier lead to:

level. Therefore if the initial map is far from the minimum and many gradi-

ent step iterations are needed, the error in mass conservation may be large.

More recently, in [19], it was proposed to directly solve the minimization of (6)

under mass conservation constraint, by a sequential quadratic programming

approach. This method, however, leads to an optimization problem of the size

of the spatial grid resolution.

3 Action minimization

In [20] it is shown that the optimal mass transfer problem is equivalent to

the flow of a pressureless ideal compressible fluid. Consider a time-dependent

density function ρ(x, τ) defined in Rd such that

ρ(x, 0) = ρ0(x) (19)

and

ρ(x, T ) = ρ1(x). (20)

The variable τ stands now for time and it plays a different role compared to

the parameter t of the previous section. It can be shown (see [20]) that the

optimal mass transfer problem is equivalent to the minimization with respect

to U(x, τ) of the time integral of the kinetic energy (the action) associated to

the transport:

J =
1

2

∫ T

0

∫

Rd
ρ(x, τ)‖U(x, τ)‖2 dxdτ, (21)

subject to equations (11), (19), (20).

Introducing a space-time lagrange multiplier ψ(x, τ), the Euler-Lagrange equa-

tions for the constrained minimum of J are

∂τψ + U ·∇ψ =
‖U‖2

2
, (22)

U = ∇ψ. (23)

and because initial and final conditions are given for ρ(x, τ), no conditions are

imposed on ψ(x, τ).

In [16], the action minimization problem under constraint is solved by the

Uzawa algorithm. The main disadvantage of this approach is that the dis-

6

level. Therefore if the initial map is far from the minimum and many gradi-

ent step iterations are needed, the error in mass conservation may be large.

More recently, in [19], it was proposed to directly solve the minimization of (6)

under mass conservation constraint, by a sequential quadratic programming

approach. This method, however, leads to an optimization problem of the size

of the spatial grid resolution.

3 Action minimization

In [20] it is shown that the optimal mass transfer problem is equivalent to

the flow of a pressureless ideal compressible fluid. Consider a time-dependent

density function ρ(x, τ) defined in Rd such that

ρ(x, 0) = ρ0(x) (19)

and

ρ(x, T ) = ρ1(x). (20)

The variable τ stands now for time and it plays a different role compared to

the parameter t of the previous section. It can be shown (see [20]) that the

optimal mass transfer problem is equivalent to the minimization with respect

to U(x, τ) of the time integral of the kinetic energy (the action) associated to

the transport:

J =
1

2

∫ T

0

∫

Rd
ρ(x, τ)‖U(x, τ)‖2 dxdτ, (21)

subject to equations (11), (19), (20).

Introducing a space-time lagrange multiplier ψ(x, τ), the Euler-Lagrange equa-

tions for the constrained minimum of J are

∂τψ + U ·∇ψ =
‖U‖2

2
, (22)

U = ∇ψ. (23)

and because initial and final conditions are given for ρ(x, τ), no conditions are

imposed on ψ(x, τ).

In [16], the action minimization problem under constraint is solved by the

Uzawa algorithm. The main disadvantage of this approach is that the dis-

6



Key Properties

without altering the distribution ρ1(x).

Our plan is therefore to compute the variation of the cost functional

I =
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ρ0(ξ)‖X (ξ, t)− ξ‖2 dξ, (6)
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cretization of the additional time dimension is such that the size of the dis-

crete problem is multiplied by N , if N is the size of the resolution in one space

direction.

An important property of the optimal transport easily follows from this for-

mulation. Indeed, an evolution equation for the potential can be obtained

substituting equation (23) into equation (22):

∂τψ +
|∇ψ|2

2
= 0, (24)

which is an Hamilton-Jacobi equation that describes a transport along straight

lines. This can be seen by taking the gradient of the equation above to obtain

∂τU + (U ·∇)U = 0, (25)

which shows that the velocity U(x, τ) is constant along a characteristic, i.e.,

the velocity is constant along rays in space and time. In fact, this means that

if ξ is the lagrangian coordinate and X (ξ, τ) the map between x and ξ at time

τ , we have

U(X (ξ, τ), τ) = V (ξ), (26)

where V (ξ) is the initial velocity. Deriving the above equation with respect to

τ , we find equation (25).

4 Mass transport along straight lines

The plan is now to use a lagrangian representation of the density distribution

to impose mass conservation. We consider a set of particles such that

ρ(x, τ) ≈
Np
∑

j=1

cj(t)σ(x−Xj(τ)) (27)

where Np is the number of particles, Xj is the particle coordinate and σj =
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level. Therefore if the initial map is far from the minimum and many gradi-

ent step iterations are needed, the error in mass conservation may be large.

More recently, in [19], it was proposed to directly solve the minimization of (6)

under mass conservation constraint, by a sequential quadratic programming

approach. This method, however, leads to an optimization problem of the size

of the spatial grid resolution.

3 Action minimization

In [20] it is shown that the optimal mass transfer problem is equivalent to

the flow of a pressureless ideal compressible fluid. Consider a time-dependent

density function ρ(x, τ) defined in Rd such that

ρ(x, 0) = ρ0(x) (19)

and

ρ(x, T ) = ρ1(x). (20)

The variable τ stands now for time and it plays a different role compared to

the parameter t of the previous section. It can be shown (see [20]) that the

optimal mass transfer problem is equivalent to the minimization with respect

to U(x, τ) of the time integral of the kinetic energy (the action) associated to

the transport:

J =
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2

∫ T

0
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Rd
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Introducing a space-time lagrange multiplier ψ(x, τ), the Euler-Lagrange equa-

tions for the constrained minimum of J are

∂τψ + U ·∇ψ =
‖U‖2

2
, (22)

U = ∇ψ. (23)

and because initial and final conditions are given for ρ(x, τ), no conditions are

imposed on ψ(x, τ).

In [16], the action minimization problem under constraint is solved by the

Uzawa algorithm. The main disadvantage of this approach is that the dis-

6

level. Therefore if the initial map is far from the minimum and many gradi-

ent step iterations are needed, the error in mass conservation may be large.

More recently, in [19], it was proposed to directly solve the minimization of (6)

under mass conservation constraint, by a sequential quadratic programming

approach. This method, however, leads to an optimization problem of the size

of the spatial grid resolution.

3 Action minimization

In [20] it is shown that the optimal mass transfer problem is equivalent to

the flow of a pressureless ideal compressible fluid. Consider a time-dependent

density function ρ(x, τ) defined in Rd such that

ρ(x, 0) = ρ0(x) (19)

and

ρ(x, T ) = ρ1(x). (20)

The variable τ stands now for time and it plays a different role compared to

the parameter t of the previous section. It can be shown (see [20]) that the

optimal mass transfer problem is equivalent to the minimization with respect

to U(x, τ) of the time integral of the kinetic energy (the action) associated to

the transport:

J =
1

2

∫ T

0

∫

Rd
ρ(x, τ)‖U(x, τ)‖2 dxdτ, (21)

subject to equations (11), (19), (20).

Introducing a space-time lagrange multiplier ψ(x, τ), the Euler-Lagrange equa-

tions for the constrained minimum of J are

∂τψ + U ·∇ψ =
‖U‖2

2
, (22)

U = ∇ψ. (23)

and because initial and final conditions are given for ρ(x, τ), no conditions are

imposed on ψ(x, τ).

In [16], the action minimization problem under constraint is solved by the

Uzawa algorithm. The main disadvantage of this approach is that the dis-

6

level. Therefore if the initial map is far from the minimum and many gradi-

ent step iterations are needed, the error in mass conservation may be large.

More recently, in [19], it was proposed to directly solve the minimization of (6)

under mass conservation constraint, by a sequential quadratic programming

approach. This method, however, leads to an optimization problem of the size

of the spatial grid resolution.

3 Action minimization

In [20] it is shown that the optimal mass transfer problem is equivalent to

the flow of a pressureless ideal compressible fluid. Consider a time-dependent

density function ρ(x, τ) defined in Rd such that

ρ(x, 0) = ρ0(x) (19)

and

ρ(x, T ) = ρ1(x). (20)

The variable τ stands now for time and it plays a different role compared to

the parameter t of the previous section. It can be shown (see [20]) that the

optimal mass transfer problem is equivalent to the minimization with respect

to U(x, τ) of the time integral of the kinetic energy (the action) associated to

the transport:

J =
1

2

∫ T

0

∫

Rd
ρ(x, τ)‖U(x, τ)‖2 dxdτ, (21)

subject to equations (11), (19), (20).

Introducing a space-time lagrange multiplier ψ(x, τ), the Euler-Lagrange equa-

tions for the constrained minimum of J are

∂τψ + U ·∇ψ =
‖U‖2

2
, (22)

U = ∇ψ. (23)

and because initial and final conditions are given for ρ(x, τ), no conditions are

imposed on ψ(x, τ).

In [16], the action minimization problem under constraint is solved by the

Uzawa algorithm. The main disadvantage of this approach is that the dis-

6

This is a presureless (infinitely compressible) Euler flow

Since

cretization of the additional time dimension is such that the size of the dis-

crete problem is multiplied by N , if N is the size of the resolution in one space

direction.

An important property of the optimal transport easily follows from this for-

mulation. Indeed, an evolution equation for the potential can be obtained

substituting equation (23) into equation (22):

∂τψ +
|∇ψ|2

2
= 0, (24)

which is an Hamilton-Jacobi equation that describes a transport along straight

lines. This can be seen by taking the gradient of the equation above to obtain

∂τU + (U ·∇)U = 0, (25)

which shows that the velocity U(x, τ) is constant along a characteristic, i.e.,

the velocity is constant along rays in space and time. In fact, this means that

if ξ is the lagrangian coordinate and X (ξ, τ) the map between x and ξ at time

τ , we have

U(X (ξ, τ), τ) = V (ξ), (26)

where V (ξ) is the initial velocity. Deriving the above equation with respect to

τ , we find equation (25).

4 Mass transport along straight lines

The plan is now to use a lagrangian representation of the density distribution

to impose mass conservation. We consider a set of particles such that

ρ(x, τ) ≈
Np
∑

j=1

cj(t)σ(x−Xj(τ)) (27)

where Np is the number of particles, Xj is the particle coordinate and σj =

σ(x−Xj(τ)) is a regularization of a Dirac mass satisfying

∫

Ωr

σ(ξ) dξ = 1, (28)

7

information is propagated along rays

Difficult to integrate: two time conditions for the density 
and no initial neither final condition for the potential

mass conservation

H-J equation for the potential

flow is irrotational

time conditions: Time conditions concerns the 
density only.

+ B.C. for the potential



A Lagrangian scheme:

cretization of the additional time dimension is such that the size of the dis-

crete problem is multiplied by N , if N is the size of the resolution in one space

direction.

An important property of the optimal transport easily follows from this for-

mulation. Indeed, an evolution equation for the potential can be obtained

substituting equation (23) into equation (22):

∂τψ +
|∇ψ|2

2
= 0, (24)

which is an Hamilton-Jacobi equation that describes a transport along straight

lines. This can be seen by taking the gradient of the equation above to obtain

∂τU + (U ·∇)U = 0, (25)

which shows that the velocity U(x, τ) is constant along a characteristic, i.e.,

the velocity is constant along rays in space and time. In fact, this means that

if ξ is the lagrangian coordinate and X (ξ, τ) the map between x and ξ at time

τ , we have

U(X (ξ, τ), τ) = V (ξ), (26)

where V (ξ) is the initial velocity. Deriving the above equation with respect to

τ , we find equation (25).

4 Mass transport along straight lines

The plan is now to use a lagrangian representation of the density distribution

to impose mass conservation. We consider a set of particles such that

ρ(x, τ) ≈
Np
∑

j=1

cj(t)σ(x−Xj(τ)) (27)

where Np is the number of particles, Xj is the particle coordinate and σj =

σ(x−Xj(τ)) is a regularization of a Dirac mass satisfying

∫

Ωr

σ(ξ) dξ = 1, (28)

7

Information moves along straight lines:  Transport PDE has a 
simple lagrangian solution.

cretization of the additional time dimension is such that the size of the dis-

crete problem is multiplied by N , if N is the size of the resolution in one space

direction.

An important property of the optimal transport easily follows from this for-

mulation. Indeed, an evolution equation for the potential can be obtained

substituting equation (23) into equation (22):

∂τψ +
|∇ψ|2

2
= 0, (24)

which is an Hamilton-Jacobi equation that describes a transport along straight

lines. This can be seen by taking the gradient of the equation above to obtain

∂τU + (U ·∇)U = 0, (25)

which shows that the velocity U(x, τ) is constant along a characteristic, i.e.,

the velocity is constant along rays in space and time. In fact, this means that

if ξ is the lagrangian coordinate and X (ξ, τ) the map between x and ξ at time

τ , we have

U(X (ξ, τ), τ) = V (ξ), (26)

where V (ξ) is the initial velocity. Deriving the above equation with respect to

τ , we find equation (25).

4 Mass transport along straight lines

The plan is now to use a lagrangian representation of the density distribution

to impose mass conservation. We consider a set of particles such that

ρ(x, τ) ≈
Np
∑

j=1

cj(t)σ(x−Xj(τ)) (27)

where Np is the number of particles, Xj is the particle coordinate and σj =

σ(x−Xj(τ)) is a regularization of a Dirac mass satisfying

∫

Ωr

σ(ξ) dξ = 1, (28)

7Lagrangian mass formulation: mass conservation is strongly imposed:

where Ωr ⊂ Rd is the support of the regularizing kernel σ. Let Ω(τ) =
Np
⋃

j=1
Ωj(τ), with Ωj(τ) the support of σj. We have that

∫

Ω(τ)
(∂τρ+∇ · (ρ∇ψ)) dx =

d

dτ

∫

Ω(τ)
ρ dx, (29)

and substituting equation (27)

d

dτ

∫

Ω(τ)
ρ dx =

d

dτ

∫

Ω(τ)

Np
∑

j=1

cj(τ)σj dx =
Np
∑

j=1

d

dτ

(

cj(τ)
∫

Ω(τ)
σj

)

dx, (30)

which reduces to
d

dτ

∫

Ω(τ)
ρ dx =

Np
∑

j=1

∂τcj(τ). (31)

In the following we assume that

∂τcj(τ) = 0, (32)

so that the mass conservation equation is identically satisfied. As a conse-

quence, the time invariant quantity cj can be interpreted as the mass of the

j-th particle.

Let us now take

Xj(τ) = ξj + V (ξj) τ, (33)

where ξj is the position of the particle at τ = 0 and V (ξj) is the initial velocity

of the particle. This equation translates the fact that the velocity is constant

along straight lines. Thanks to this assumption, equation (25) is identically

satisfied.

4.1 Reconstruction of the initial condition

The discretization of ρ(x, τ) verifies the mass constraint by equation (32) and

the particle trajectories Xj(τ) are such that U(x, τ) respects equation (25).

We now choose the time-invariant coefficients cj in such a way that the initial

mass distribution ρ(x, 0) = ρ0(x) is approximated in a least-square sense.

Given ρ(x, 0) on a regular cartesian mesh, a simple choice consists in placing

the particles in the nodes where ρ(x, 0) > δ0, δ0 being the smallest density
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such that:
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A Lagrangian scheme:

that is considered. At the discrete level, the approximation problem is then

formulated as an optimization problem for the cj:

cj = arg











min
dj

Ng
∑

k=1



ρ(xk, 0)−
Np
∑

j=1

dj σ(xk −Xj(0))





2










, (34)

whereNg is the number of grid points where the error is evaluated. The particle

initial positions Xj(0) = ξj are given and coincide with the grid points where

the density is above a certain threshold. Other more sophisticated choices, like

for example adapting the particle distribution to ρ(x, 0), can lead to better

accuracy. However, if the initial position of the particles is given, the recon-

struction of the initial density distribution always amounts to a quadratic

optimization problem in the coefficients cj that can be solved by a linear sys-

tem. The computational cost of this step is negligible since the size of the

problem is Np ×Np and the number of particles is usually of the order of 103

to 106, according to resolution and the number of space dimensions.

4.2 Potential velocity field and reconstruction of the final condition

The mass cj of each particle is now determined from the approximation of the

initial condition. The particles move along straight lines and the particle mass

remains constant along these trajectories. Two conditions for the minimum

of (21) are hence satisfied. We still have to enforce that the velocity field is

potential and that the final condition on the density distribution is verified. In

order to do so, we assume that the components of the velocity are expressed as

centered finite differences in the respective directions of a scalar function whose

values on the grid are ψl. Denoting by Djl the elements of the discrete centered

gradient operator, we have that the velocity of each particle is Vj =
∑Nd

l=1 Djlψl,

where Nd is of the order of Np. Next, an optimization problem with respect

to ψl is solved to approximate the final mass distribution. We have

ψl = arg
{

min
Ψl

E(Ψl)
}

=

arg











min
Ψl

Ng
∑

k=1



ρ(xk, T )−
Np
∑

j=1

cj σ(xk − ξj −
Nd
∑

l=1

DjlΨl T )





2










.
(35)

The gradient of the above function can easily be computed so that the nu-

9

Initial condition:

Final Condition:

A regularization is added in order to speed up convergence:

merical solution of this problem is solved by a steepest descent method or by

quasi-Newton iterations.

Mollifying kernels σ(ξ) with compact support can be used, although the sup-

port must be large enough to keep some desirable properties. In cases in which,

for example, a fragmentation process takes place, or simply in cases in which

the density supports at times τ = 0 and τ = T have null intersection, compact

support kernels with small enough support may result in having ∂E/∂Ψl = 0

from the first optimization step because the error vanishes where the support

of the kernel is non zero and vice versa.

In order to possibly speed up convergence toward the minimum, a penalization

can be added to E(Ψl):

Ep(Ψl) = E(Ψl) + β
Np
∑

j

cj
‖
∑Nd

l=1DjlΨl‖2

2
, (36)

where β ∈ R+. The actual effect on convergence of the penalization term is

studied in the numerical experiments hereafter.

In summary, in the discrete problem that we have formulated mass conser-

vation, mass transport along straight lines and potential velocity field are

exactly satisfied at the discrete level. The initial and final mass distribution

are approximated in a least square sense. Of course, the problem solution is

independent of T . We kept the notion of the time variable τ in case the in-

termediate states of the mapping are to be computed. This is an inexpensive

task thanks to equation (33).

5 Numerical tests

In the following numerical experiments we use the gaussian kernel

σ(ξ) =
1

(&
√
π)d

exp

(

−
|ξ|2

&2

)

, (37)

where & is the kernel characteristic length.

The first test is relative to a problem where the initial density distribution is

uniform and the final one shows concentric compressions and rarefactions. The
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Initial and final conditions have to be imposed: the problem reduces to 
an algebraic optimization problem.

that is considered. At the discrete level, the approximation problem is then

formulated as an optimization problem for the cj:

cj = arg


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





min
dj

Ng
∑

k=1



ρ(xk, 0)−
Np
∑

j=1

dj σ(xk −Xj(0))





2

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





, (34)

whereNg is the number of grid points where the error is evaluated. The particle

initial positions Xj(0) = ξj are given and coincide with the grid points where

the density is above a certain threshold. Other more sophisticated choices, like

for example adapting the particle distribution to ρ(x, 0), can lead to better

accuracy. However, if the initial position of the particles is given, the recon-

struction of the initial density distribution always amounts to a quadratic

optimization problem in the coefficients cj that can be solved by a linear sys-

tem. The computational cost of this step is negligible since the size of the

problem is Np ×Np and the number of particles is usually of the order of 103

to 106, according to resolution and the number of space dimensions.

4.2 Potential velocity field and reconstruction of the final condition

The mass cj of each particle is now determined from the approximation of the

initial condition. The particles move along straight lines and the particle mass

remains constant along these trajectories. Two conditions for the minimum

of (21) are hence satisfied. We still have to enforce that the velocity field is

potential and that the final condition on the density distribution is verified. In

order to do so, we assume that the components of the velocity are expressed as

centered finite differences in the respective directions of a scalar function whose

values on the grid are ψl. Denoting by Djl the elements of the discrete centered

gradient operator, we have that the velocity of each particle is Vj =
∑Nd

l=1Djlψl,

where Nd is of the order of Np. Next, an optimization problem with respect

to ψl is solved to approximate the final mass distribution. We have
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
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Nd
∑
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DjlΨl T )
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2





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

.
(35)

The gradient of the above function can easily be computed so that the nu-
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Euclidean embedding

The objective is to approximate the metric space defined by Wasserstein 
distance by an euclidean space
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clidean one is called multi dimensional scale embedding, and it may be found in [112].

In their article the authors use this tool to investigate the Wasserstein distances between

phase spaces of time series described by ODEs.

Here, the purpose is to set up a similar tool to analyze partial differential equations so-

lutions. Instead of considering the phase space, which would lead to exceedingly expensive

computations, the time sampling of the solutions is used.

6.8.1 Technique definition

Let us suppose to have a database of densities, denoted by ρi, i = 1, ..., Ns, such that:

∫

Ω⊂Rd

ρi dx = 1, ∀i = 0, ..., Ns. (6.49)

This hypothesis is necessary to study the densities in terms of optimal transport; it can

be relaxed following the work of Benamou (see [76]). In this first study it is supposed to

hold for the sake of simplicity.

The 2−Wasserstein distance (denoted by W) between a couple of densities is thus

defined as:

W2(ρi, ρj) = inf
X̃

{
∫

Ω

ρi(ξ)|X̃(ξ) − ξ|2 dξ

}

,

ρi(ξ) = ρj(X̃(ξ)) det(∇ξX̃).

(6.50)

This means that the squared Wasserstein distance is proportional to the density ρi and

the square of the optimal displacement field. The optimal displacement is induced by

the optimal mapping X∗, that, among all the change of coordinates X̃(ξ) realizing the

mapping between the densities i and j, minimizes the cost of Monge L2 problem.

The Wasserstein distance squared is computed for all i, j = 1, ..., Ns, so that 1
2Ns(Ns−

1) Monge problems are performed. Then, the following matrix is defined:

Dij = W2(ρi, ρj), (6.51)

that is the matrix of the squared distances between the densities. This matrix has a

particular structure: it is symmetric (W(ρi, ρj) = W(ρj , ρi)) and all the elements on the

diagonal are zero because (W(ρi, ρi) = 0), for the definition of distance. The i − th row

of the matrix represents the distance between the i − th density and all the others. D
describes the densities as elements of a space equipped with the Wasserstein distance.
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A set of snapshots:

Wasserstein distance:

 Distance Matrix:
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An embedding is sought, such that coordinates of the elements of the space are found

with respect to the baricenter of the space, on the basis of their reciprocal distances. A

standard technique is adopted. Let us define a projector J as follows:

J = I − 1

Ns

T , (6.52)

where I ∈ Ns×Ns is the identity matrix and ∈ Ns is the column vector whose compo-

nents are all 1. Given a vector v, the action of J on it consists in projecting it onto the

space orthogonal to . The matrix embedding is defined as:

B = −1

2
JDJ. (6.53)

Then, B is decomposed via a singular value decomposition as follows:

B = USV H , (6.54)

where U and V are unitary matrices and S is the diagonal matrix whose entries are the

singular values of B. Let us concentrate on the spectrum of B. It is proved that if

the distance adopted is euclidean B is positive semi-definite. In this case a remarkable

geometric interpretation is found. Wasserstein distance is in general not euclidean, so

that negative eigenvalues appear. However, if we concentrate on the positive part of the

spectrum, supposing that there are m positive eigenvalues, the following holds:

B ≈ XΛ+XT , (6.55)

where Λ+ ∈ m×m is the matrix whose diagonal contains the positive part of the spectrum,

X ∈ Ns×m is the matrix whose columns are the eigenvectors corresponding to the positive

eigenvalues. The components of the eigenvectors represent the coordinates of the points

with respect to their baricenter. This completes multiscale embedding.

The eigenvectors have a different meaning in this context with respect to classical PCA.

As stated, the embedding is performed with respect to a baricenter of the space, which

is a density distribution whose properties will be further investigated in the following

sections. The i − th component of the k − th eigenvector represents the weight of the

i−th mapping (that transports the baricenter in the i−th snapshot) to build the optimal

transport corresponding to the k− th eigenvalue. In the following we call k− th mode the

k − th optimal transport, when a baricenter density is given. Conversely, when a base of

mappings is taken in the space {v1, ..., vk}, the mapping transporting the baricenter in the

An euclidean space is sought, such that the distances between its elements 
recover at best the matrix distance
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 Embedding Matrix: where:

B is PSD <=> D is a distance matrix.  Then B=X X’.

X is the matrix whose rows are the coordinates of the euclidean space elements



Ideal Vortex Scattering
154 CHAPTER 6. OPTIMAL TRANSPORT

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−8 −6 −4 −2 0 2 4 6 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

y

(a) (b) (c)

Figure 6.15: Three different scattering, trajectories of vortex cores for: a) l = 1.5, β = 0.5,

f = 0.25 b) l = 1.0, β = 0.75, f = 0.15 c) l = 2.0, β = 0.15, f = 0.30

The equations of motion are integrated via an adaptive step fourth order Runge-Kutta

scheme, in the time interval [0, 2.5]. The solution depends on the parameters initial

values. In Fig.6.15, three different situations are represented. In Fig.6.15.a) a scattering

is represented in which vortices keep their partner (the parameters used are: l = 1.5,

β = 0.5, f = 0.25). When l = 1.0, β = 0.75, f = 0.15 vortexes change their partner

during the interaction and escape with the counter rotating vortex belonging to the other

couple. In Fig.6.15.c) a weak interaction is represented, in which the couples simply move

on (almost) straight lines (for l = 2.0, β = 0.15, f = 0.30).

Once the position of the vortices centers is known, the flow is obtained by the su-

perposition of ideal vortex fields (velocity goes like 1/R, where R is the distance to the

centre). For a first analysis enstrophy is considered, so that the motion of four unitary

Dirac masses is investigated. The Wasserstein distance has been computed by means of

an exact combinatorial algorithm. For all the test 50 time frames were taken.

The embedding technique presented in the previous section were adopted. Some nega-

tive eigenvalues appear, due to the fact that the distance is not euclidean. They are small

in modulus so that they are linked to some secondary feature of the evolution (in terms

of Wasserstein distance). In Fig.6.16.a) the singular values of the embedding matrix are

represented for the first case described. Only two eigenvalues are relevant in the approx-

imation of the phenomenon. The corresponding eigenvectors are represented in a phase

plane plot. The circles represent the components of the eigenvectors and can be associ-

ated to the time frames. Two directions emerges, that represent the optimal transports

occurring before and after the interaction. The points which are not aligned represents

the snapshots of the enstrophy configurations taken during the interaction.

The dynamics is governed by an Hamiltonian system: three different 
trajectories are represented, varying the offset

c) weak interaction.

a) meeting;

b) mating;
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Figure 6.16: First case: a) the singular values of the embedding matrix in logarithmic; in

b) the first two eigenvectors are represented in a phase plane plot.

The same analysis was performed for the cases b) and c) of Fig.6.15. Concerning the

second case (see for instance Fig.6.17), the spectrum of the embedding matrix is similar to

that obtained for the first case: two singular values emerges. Thus, the plot of the first two

eigenvectors was done in a phase plane plot. As the vortex interaction is quite different,

the resulting eigenvectors have a different configuration, but the optimal transport before

and after the interaction may be recognized. The third case (see Fig.6.18) is different from

the others. The interaction is very weak so that the resulting motion is practically an

optimal transport. This third case may be considered as a perturbation of the analytical

case analyzed in the previous section, in which the uniform sampling of a single optimal

transport was used to derive a scaling relation for the eigenvalues. Indeed, in Fig.6.18.a)

the plot of the singular values confirms that only one eigenvalue is important. The plot of

the corresponding eigenvector in Fig.6.18.b) show that most of the snapshots are aligned,

that is, they may be obtained by non-linear interpolation (i.e. by transport) of the

baricentral density via a unique optimal transport. In this simple (and almost analytical)

first examples, the comparison with the standard POD can be done conceptually in a

very straightforward manner. The enstrophy is considered, which consists, as stated,

in four Dirac masses. Thus, for the second and the third cases (Fig.6.15 b) and c))

the autocorrelation matrix (i.e. the matrix of scalar products of the snapshots) is the

identity matrix. Hence, a lot of POD modes are necessary to reach the representation

that is given by one or two modes built by the Wasserstein distance approach. For the

first case (Fig.6.15.a)), the trajectories intersect, so that the autocorrelation matrix is not
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Figure 6.17: Second case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first two eigenvectors represented in a phase plane plot.
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Figure 6.18: Third case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first eigenvector
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Figure 6.17: Second case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first two eigenvectors represented in a phase plane plot.
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Figure 6.18: Third case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first eigenvector

Spectra of the embedding matrix in the three cases:

c) Only one eigenvalue is significant. 

a)Two eigenvalues are significant;

b) Two eigenvalues are significant;
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Figure 6.16: First case: a) the singular values of the embedding matrix in logarithmic; in

b) the first two eigenvectors are represented in a phase plane plot.

The same analysis was performed for the cases b) and c) of Fig.6.15. Concerning the

second case (see for instance Fig.6.17), the spectrum of the embedding matrix is similar to

that obtained for the first case: two singular values emerges. Thus, the plot of the first two

eigenvectors was done in a phase plane plot. As the vortex interaction is quite different,

the resulting eigenvectors have a different configuration, but the optimal transport before

and after the interaction may be recognized. The third case (see Fig.6.18) is different from

the others. The interaction is very weak so that the resulting motion is practically an

optimal transport. This third case may be considered as a perturbation of the analytical

case analyzed in the previous section, in which the uniform sampling of a single optimal

transport was used to derive a scaling relation for the eigenvalues. Indeed, in Fig.6.18.a)

the plot of the singular values confirms that only one eigenvalue is important. The plot of

the corresponding eigenvector in Fig.6.18.b) show that most of the snapshots are aligned,

that is, they may be obtained by non-linear interpolation (i.e. by transport) of the

baricentral density via a unique optimal transport. In this simple (and almost analytical)

first examples, the comparison with the standard POD can be done conceptually in a

very straightforward manner. The enstrophy is considered, which consists, as stated,

in four Dirac masses. Thus, for the second and the third cases (Fig.6.15 b) and c))

the autocorrelation matrix (i.e. the matrix of scalar products of the snapshots) is the

identity matrix. Hence, a lot of POD modes are necessary to reach the representation

that is given by one or two modes built by the Wasserstein distance approach. For the

first case (Fig.6.15.a)), the trajectories intersect, so that the autocorrelation matrix is not
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Figure 6.17: Second case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first two eigenvectors represented in a phase plane plot.

0 5 10 15 20 25 30 35 40 45 50
10−20

10−15

10−10

10−5

100

105

n

E
ig
en
va
lu
e

0 5 10 15 20 25 30 35 40 45 50
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

n

v 1

(a) (b)

Figure 6.18: Third case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first eigenvector
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Figure 6.17: Second case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first two eigenvectors represented in a phase plane plot.
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Figure 6.18: Third case: a) the singular values of the embedding matrix in logarithmic

scale; in b) the first eigenvector

c) First eigenvector for the weak interaction.

a) Phase plot for meeting;

b) Phase plot for mating;
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The same analysis is performed in the case of a vortex shedding, for an 
incompressible flow around a confined circular cylinder

Kinetic Energy is studied, which is almost satisfying normalization condition; 
10 snapshots are taken on half a period of vortex shedding 6.8. APPLICATION OF WASSERSTEIN DISTANCE TO MODEL REDUCTION 157

1 2 3 4 5 6 7 8 9 10
10−20

10−15

10−10

10−5

100

105

n

E
ig
en
va
lu
es

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

v1

v 2

(a) (b)

Figure 6.19: Kinetic energy of the flow around a circular cylinder: a) singular values in

logarithmic scale b) phase plot of the first two eigenvectors

diagonal. However, few extradiagonal elements appear, so that, even in this case, a lot of

POD modes are required.

6.8.5 2D cylinder vortex shedding

In this section the vortex shedding around a circular confined cylinder is analyzed. Several

quantities may be studied. In order to give a complete analysis of the patterns arising (von

Karman street) and to link the expansions for the mappings to incompressible Navier-

Stokes equations at least two quantities are necessary (namely the two components of the

velocity field u, v). In this preliminary study we concentrate on the ability to represent

coherent structures and in particular to the possibility to have a good approximation in a

reduced space. The kinetic energy of the flow is studied: it has been normalized in order

to fulfill the mass constraint. Half a period of vortex shedding is considered of a flow

computed at Re = 200.

A first analysis was performed taking 10 snapshots of the kinetic energy of the flow

and computing the matrix of Wasserstein distances squared. The space resolution adopted

was 200 × 100, resulting in 2 · 104 collocation points. A multilevel algorithm was used

with 4 grids and linear interpolation kernels. In Fig.6.19.a) the singular values of the

embedding matrix associated to the problem is shown. The cascade has a smaller steepness

with respect to those ones observed for the vortex scattering, but even in this case two

eigenvalues may be retained, that provide a good approximation. In Fig.6.19.b) the phase

Spectrum of the embedding matrix and phase portait of the first two eigenvectors



Vortex Shedding

The following test was performed:

c) The flow is recovered mapping the center distribution in the snapsnots: 

a) Three snapshots are taken: at t=0, t=T/4, t=T/2, where T is the period

b) The distribution that corresponds to the center of the circle is computed
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(a)

Figure 6.20: Baricentral density for the kinetic energy of the flow around a circular

cylinder: isocontours, 30 lines between the maximum and the minimum

plot of the first two eigenvectors is shown, revealing a remarkable structure: the points

are located on a circle. That means that, given two orthogonal base mappings φ1, φ2 the

flow is well approximated by the transport of a baricentral density (localized in the centre

of the circle) by the following mapping: Φ(t) = cos(2πt)φ1 + sin(2πt)φ2, where t ∈ [0, 1]

is the time corresponding to a period.

This analysis suggests that three snapshots are sufficient to compute the baricentral

density and two orthogonal base mappings. Three snapshots are taken at t = 0, t = 0.25,

t = 0.5, equally distributed on half a period. In the following ρ0 is the kinetic energy

distribution at the very beginning, ρ1 the kinetic energy at a quarter of period and ρ2

that of at half a period. The optimal transport is computed by means of the multilevel

algorithm, then, the obtained mapping is used to transport ρ0 into the baricentral one,

according to:

XG = ξ +
1

2
∇ξφ02, (6.76)

where the factor 1/2 means that the collocation points are moved by half the displacement

that allows to map ρ0 into ρ2. Hence:

ρ0(ξ) = ρG(Xg) det(∇ξXG). (6.77)

In Fig.6.20 the baricentral density is shown, computed from the nonlinear interpolation

between the kinetic energy distributions ρ0 and ρ2. It is not perfectly symmetrical with

respect to the x axis, and this is due to the fact that the considered snapshots have a

slight asymmetry too. Let us remark that the baricentral density is not a configuration

happening in the physical evolution of the system. However, the average position of

the structures and the characteristic distance of the vortex in the weak may be inferred.

In Fig.6.21 the base mappings are shown. The first mapping (Fig.6.21.a) has already
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Figure 6.20: Baricentral density for the kinetic energy of the flow around a circular

cylinder: isocontours, 30 lines between the maximum and the minimum

plot of the first two eigenvectors is shown, revealing a remarkable structure: the points

are located on a circle. That means that, given two orthogonal base mappings φ1, φ2 the

flow is well approximated by the transport of a baricentral density (localized in the centre

of the circle) by the following mapping: Φ(t) = cos(2πt)φ1 + sin(2πt)φ2, where t ∈ [0, 1]

is the time corresponding to a period.

This analysis suggests that three snapshots are sufficient to compute the baricentral

density and two orthogonal base mappings. Three snapshots are taken at t = 0, t = 0.25,

t = 0.5, equally distributed on half a period. In the following ρ0 is the kinetic energy

distribution at the very beginning, ρ1 the kinetic energy at a quarter of period and ρ2

that of at half a period. The optimal transport is computed by means of the multilevel

algorithm, then, the obtained mapping is used to transport ρ0 into the baricentral one,

according to:

XG = ξ +
1

2
∇ξφ02, (6.76)

where the factor 1/2 means that the collocation points are moved by half the displacement

that allows to map ρ0 into ρ2. Hence:

ρ0(ξ) = ρG(Xg) det(∇ξXG). (6.77)

In Fig.6.20 the baricentral density is shown, computed from the nonlinear interpolation

between the kinetic energy distributions ρ0 and ρ2. It is not perfectly symmetrical with

respect to the x axis, and this is due to the fact that the considered snapshots have a

slight asymmetry too. Let us remark that the baricentral density is not a configuration

happening in the physical evolution of the system. However, the average position of

the structures and the characteristic distance of the vortex in the weak may be inferred.

In Fig.6.21 the base mappings are shown. The first mapping (Fig.6.21.a) has already

Center Distribution: 
it is not a physical 
configuration!
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(a) (b)

Figure 6.21: Isocontours of the base mappings: 30 lines between the maximum (1.25e−3)

and the minimum −1.25e − 3.

(a) (b)

Figure 6.22: Isocontours (30 lines between the maximum and the minimum) of the recon-

struction (upper line) and the simulation (lower line) for a) t = 0 and for t = 1/8

been computed to find the baricentral density. Once obtained, the mapping between the

baricentral density and ρ1 (i.e. the density located at a quarter of period) is computed

providing automatically the mapping represented in Fig.6.21.b). The displacements fields

(computed by taking the gradient of the potentials) are two sequences of alternated couples

of sources and sinks, rendering the periodicity of the structures.

The approximation properties are investigated. In particular, given the base maps, the

snapshots of the flow are reconstructed by transporting the baricentral density with the

suitable displacement field, obtained by summing the mappings multiplied by (cos(2πti),

sin(2πti)), where ti is the position in the period of the i − th snapshot.

Two cases are shown, corresponding to a good approximation and to a poor one. In

Fig.6.22.a) the representation is shown for t = 0. In this case only the first mapping is

used, and the snapshot has been used to build the base. This reflects in a very good

Representation of the kinetic energy of the flow:
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Figure 6.22: Isocontours (30 lines between the maximum and the minimum) of the recon-

struction (upper line) and the simulation (lower line) for a) t = 0 and for t = 1/8

been computed to find the baricentral density. Once obtained, the mapping between the

baricentral density and ρ1 (i.e. the density located at a quarter of period) is computed

providing automatically the mapping represented in Fig.6.21.b). The displacements fields

(computed by taking the gradient of the potentials) are two sequences of alternated couples

of sources and sinks, rendering the periodicity of the structures.

The approximation properties are investigated. In particular, given the base maps, the

snapshots of the flow are reconstructed by transporting the baricentral density with the

suitable displacement field, obtained by summing the mappings multiplied by (cos(2πti),

sin(2πti)), where ti is the position in the period of the i − th snapshot.

Two cases are shown, corresponding to a good approximation and to a poor one. In

Fig.6.22.a) the representation is shown for t = 0. In this case only the first mapping is

used, and the snapshot has been used to build the base. This reflects in a very good

Best (t=0) Worst (t=T/8)

Vortex Shedding



Euclidean embedding

Korteweg-de Vries equation with diffusion

Standard POD modal approximation

Transport approximation + POD modal approximation of the residual
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