Modal representation for reduced order models

Angelo lollo

Université Bordeaux I

Thierry Colin
Damiano Lombardi
Olivier Saut
Jean Paloussière
Michel Bergmann
Marcelo Buffoni
Edoardo Lombardi
Jessie Weller

- Discrete instantaneous velocity expanded in terms of empirical eingenmodes:

$$
\boldsymbol{u}(\boldsymbol{x}, t)=\overline{\boldsymbol{u}}(\boldsymbol{x})+\sum_{n=1}^{N_{r}} a_{n}(t) \boldsymbol{\phi}_{n}(\boldsymbol{x})
$$

where $\overline{\boldsymbol{u}}(\boldsymbol{x})$ is a reference velocity field.

- Eigenmodes $\phi_{n}(x)$ are found by proper orthogonal decomposition (POD) using the "snapshots method" of Sirovich (1987).
- Limited number of POD modes, N_{r}, is used in the representation of velocity fields (snapshots) \longrightarrow they are the modes giving the main contribution to the flow energy.
- Galerkin projection of the Navier-Stokes equations over the retained POD modes leading to the low-order model:

$$
\begin{aligned}
& \dot{a}_{r}(t)=A_{r}+C_{k r} a_{k}(t)-B_{k s r} a_{k}(t) a_{s}(t) \\
& a_{r}(0)=\left(\boldsymbol{u}(\boldsymbol{x}, 0)-\overline{\boldsymbol{u}}(\boldsymbol{x}), \boldsymbol{\phi}_{r}\right)
\end{aligned}
$$

- Coefficient $B_{k s r}$ derives directly from the Galerkin projection of the non-linear terms in the Navier-Stokes equations

Tumor growth modeling

- PDE models: they are all parametric models
- Parameters take into account microscopic and mesoscopic scales phenomena that we do not model directly
- As consequence, parameters do not have a biological meaning and can not be measured; they need to be identified.

Inverse problems

- Identification:

$$
\partial_{t} Y(x ; t)=f(Y, P, T) \longrightarrow \text { The } \underset{\text { observales and parameters to be determined! }}{ }
$$

$\operatorname{lm} \mathrm{m}_{\mathrm{i}}=\operatorname{lm}\left(\mathrm{x} ; \mathrm{t}_{\mathrm{i}}\right) \longrightarrow$ The data: in general, medical images
$E_{i}=\operatorname{lm} m_{i} Y\left(x ; t_{i}\right) \longrightarrow W$ We want to minimize the error beween the simulated history and measurements

The model

$$
\begin{array}{cll}
\frac{\partial P}{\partial t}+\nabla \cdot(\mathbf{v} P)=(2 \gamma-1) P & \longleftarrow & \text { Proliferating cells density } \\
\frac{\partial Q}{\partial t}+\nabla \cdot(\mathbf{v} Q)=(1-\gamma) P & \longleftarrow & \text { Dead cells density } \\
\nabla \cdot(k \nabla \Pi)=-\gamma P & \longleftarrow & \text { Saturation, "mitosis equation" } \\
\mathbf{v}=-k \nabla \Pi & \longleftarrow & \text { Mechanical closure } \\
-\nabla \cdot(D \nabla C)=-\alpha P C-\lambda C & \longleftarrow & \text { Nutrient equation } \\
k=k_{1}+\left(k_{2}-k_{1}\right)(P+Q), & \longleftarrow & \text { Porosity } \\
D=D_{\max }-K(P+Q) & \longleftarrow & \text { Diffusivity } \\
\gamma=\frac{1+\tanh \left(R\left(C-C_{\text {hyp }}\right)\right)}{2} & \longleftarrow & \text { Hypoxia function }
\end{array}
$$

$$
Y=P+Q
$$

Inverse problems:

I) Reduced approach: compute a database of solutions, extract "important" structures and minimize residuals

$$
\partial_{t} Y=f(Y, P, \pi) ; \quad\left(\pi_{j}, P_{r}\right)=\arg \min _{\tilde{P}, \tilde{\pi}}\left\{\sum_{i}\left\|f\left(m_{i}, \tilde{P}, \tilde{\pi}\right)-\partial_{t} Y\right\|^{2}\right\}
$$

Inverse problems:

- The POD expansions are sobstituted into the equations written for the observable Y

$$
\begin{aligned}
& \dot{Y}+a_{i}^{v} \nabla \cdot\left(Y \phi_{i}^{v}\right)=a_{j}^{\gamma P} \phi_{j}^{(\gamma P)} \\
& a_{i}^{v} \nabla \cdot\left(\phi_{i}^{v}\right)=a_{j}^{\gamma P} \phi_{j}^{\gamma P} \\
& k(Y) a_{i}^{v} \nabla \wedge \phi_{i}^{v}=\nabla k(Y) \wedge a_{i}^{v} \phi_{i}^{v} \\
& a_{i}^{C} \phi_{i}^{C}-a_{i}^{C} \nabla \cdot\left(K(Y) \nabla \phi_{i}^{C}\right)=-\alpha a_{i}^{p} a_{i}^{C} \phi_{i}^{C} \phi_{i}^{P}-\lambda a_{i}^{C} \phi_{i}^{C} \\
& 2 a_{i}^{\gamma P} \phi_{i}^{\gamma P}=1+\tanh \left(R\left(a_{i}^{C} \phi_{i}^{C}-C_{h y p}\right)\right)
\end{aligned}
$$

- Unknowns:
- $k_{2} / k_{1}, D_{\max }, K, \alpha, \lambda, C_{\text {hyp }} \longrightarrow$ Parameters
- $a_{i}^{P}, a_{i}^{C}, a_{i}^{v}, a_{i}^{\gamma P}$

Expansion Coefficients: functions of time only

Inverse problems:

- In the equation for the observable the time derivative $\mathrm{dY} / \mathrm{dt}$ is unknown
- To solve the problem the time derivative is approximated by interpolation
- Several type of interpolation have been tested:
- Linear:

$$
\begin{aligned}
& Y=t A+(1-t) B \\
& \dot{Y} \approx A \exp \{\zeta t\}+B \exp \{-\zeta t\}=f(\zeta) \\
& Y \approx A G(\omega, \sigma)+B G(-\omega,-\sigma) \\
& G(\omega, \sigma)=\frac{\omega e^{\omega t}}{\omega-\sigma e^{\omega t}}
\end{aligned}
$$

Inverse problems:

- Solution of the non-linear system written at the time t, when Y is observed: minimization of the residual

$$
\left(a_{i}^{(\cdot)}\left(t_{0}\right), \pi_{j}\right)=\operatorname{argmin}\{F\}=\operatorname{argmin}\left\{\sum_{l} R_{l}^{2}\right\}
$$

- Residual is minimized using a Newton solver (Levemberg-Marquardt).
- Condition on the variable P are imposed via a penalisation techinque.
- Reaction-Diffusion equation for the oxygen is critical since the variable is not observed, but entirely regularized.

Inverse problems:

2) Sensitivity: minimization of the error with respect to parameters and non-observed quantities.

Slow growth nodule

Metastatic nodules in lungs: slow dynamics

- Given two, or three images, can we recover the following scans?

Slow growth nodule

- Computational set up:

\diamond Finite Volume schemes on cartesian mesh;
-WENO 5 scheme for transport;

- RK2 scheme for time discretization;
\diamond Level set methods;
\diamond Resolution: 200×200, domain $[0,8] \times[0,8]$
\diamond Time: 2 min on one CPU
- Control set:
\diamond Parameters + Initial Condition for P
$\diamond \mathrm{P}$ is supposed to be an external layer: $\mathrm{P}_{0}=\mathrm{A} \exp \left(-\delta \varphi^{2}\right)$

Slow growth nodule

Tumor density distribution.
Active part of the tumor Isocontours of nutrients

Slow growth nodule

Fig. 12. POD modes for the oxygen field, Case I: a) First mode, b) Third mode c) Fith mode.

Slow growth nodule

Distribution of radio-resistant cells:

Slow growth nodule

- Reduced model:

POD expansion:

- $N p=15, N c=5, N v=10 ; N g p=15$

Volume curve:

Comparison between sensitivity (blue) and ROM (black); at the beginning they have the same behavior

Slow growth nodule

Scan:

Error is essentially a shape error:

Two nodules case

How far we can represent a PDE solution by POD ?

1 - Problème base POD, $\Phi_{\mathbf{n}}(\mathbf{x})$: mauvaise représentation écoulements 3D turbulents hors base de données

- Problèmes contrôle écoulements 3D turbulents
- Propriétés de turbulence érronées (spectre, etc)

Coherence by optimal mass transport

How to displace a certain amount of mass in such a way that a cost functional is minimized?

* Histoire de l'Academie de Science de Paris:"Mémoire sur la théorie des déblais remblais"

Mathematical formulation

- $\rho_{0}(\xi) \rho_{1}(x) \quad$ are two density distributions such that:
$\Delta \quad \int_{\Omega_{0}} \rho_{0}(\xi) d \xi=\int_{\Omega_{1}} \rho_{1}(x) d x=1 \quad$ mass is conserved
$\Delta \quad \operatorname{det}\left(\nabla_{\xi} X\right) \rho_{1}(X(\xi))=\rho_{0}(\xi) \quad$ if and only if \mathbf{X} is one-to-one
- Infinitely many X exists. Among them we look for the optimal one:
$\boldsymbol{\Delta} \quad \int_{\Omega_{0}} \rho_{0}(\xi)\left\|X^{*}(\xi)-\xi\right\|^{2} d \xi \leq \int_{\Omega_{0}} \rho_{0}(\xi)\|X(\xi)-\xi\|^{2} d \xi$

Mathematical formulation

- Theorem: the solution of this problem exists unique, and has this form:
$X^{*}(\xi)=\nabla_{\xi} \Psi(\xi)$
where the potential is a convex function (a.e.)
- This problem can be formulated as the minimum of an action:
$J=\frac{1}{2} \int_{0}^{T} \int_{R^{d}} \rho(x, \tau)\|U(x, \tau)\|^{2} d x d \tau$
- Enforcing mass conservation $\partial_{t} \rho+\nabla_{x} \cdot(\rho U)=0$ by means of a lagrangian multiplier lead to: $\partial_{\tau} \psi+U \cdot \nabla \psi=\frac{\|U\|^{2}}{2} \quad U=\nabla \psi$

Key Properties

$\Delta \quad \partial_{t} \rho+\nabla_{x} \cdot(\rho U)=0$
$\boldsymbol{\Delta} \quad \partial_{\tau} \psi+\frac{|\nabla \psi|^{2}}{2}=0$
$\Delta \quad U=\nabla \psi$
time conditions:
$\diamond \quad \rho(x, 0)=\rho_{0}(x)$
$\diamond \quad \rho(x, T)=\rho_{1}(x)$

+ B.C. for the potential
mass conservation
H-J equation for the potential
flow is irrotational
Time conditions concerns the density only.
- This is a presureless (infinitely compressible) Euler flow
- Since $\partial_{\tau} U+(U \cdot \nabla) U=0$ information is propagated along rays
- Difficult to integrate: two time conditions for the density and no initial neither final condition for the potential

A Lagrangian scheme:

- Information moves along straight lines: Transport PDE has a simple lagrangian solution.
A set of particles is defined such that:
Δ

$$
\int_{\Omega_{r}} \sigma(\xi) d \xi=1
$$

- Lagrangian mass formulation: mass conservation is strongly imposed:

$$
\begin{array}{cc}
\boldsymbol{\Delta} \quad \frac{d}{d \tau} \int_{\Omega(\tau)} \rho d x=0 \quad \rho(x, \tau) \approx \sum_{j=1}^{N_{p}} c_{j}(t) \sigma\left(x-X_{j}(\tau)\right) \\
\frac{d}{d \tau} \int_{\Omega(\tau)} \rho d x=\sum_{j=1}^{N_{p}} \partial_{\tau} c_{j}(\tau) & \partial_{\tau} c_{j}(\tau)=0
\end{array}
$$

- The solution of the H-J equation, once the initial condition is set, reduces to:

$$
X_{j}(\tau)=\xi_{j}+V\left(\xi_{j}\right) \tau
$$

A Lagrangian scheme:

- Initial and final conditions have to be imposed: the problem reduces to an algebraic optimization problem.
Δ Initial condition:

$$
c_{j}=\arg \left\{\min _{d_{j}} \sum_{k=1}^{N_{g}}\left[\rho\left(x_{k}, 0\right)-\sum_{j=1}^{N_{p}} d_{j} \sigma\left(x_{k}-X_{j}(0)\right)\right]^{2}\right\}
$$

Δ Final Condition:

$$
\psi_{l}=\arg \left\{\min _{\Psi_{l}} \mathcal{E}\left(\Psi_{l}\right)\right\}=\arg \left\{\min _{\Psi_{l}} \sum_{k=1}^{N_{g}}\left[\rho\left(x_{k}, T\right)-\sum_{j=1}^{N_{p}} c_{j} \sigma\left(x_{k}-\xi_{j}-\sum_{l=1}^{N_{d}} D_{j l} \Psi_{l} T\right)\right]^{2}\right\}
$$

- A regularization is added in order to speed up convergence:

$$
\mathcal{E}_{p}\left(\Psi_{l}\right)=\mathcal{E}\left(\Psi_{l}\right)+\beta \sum_{j}^{N_{p}} c_{j} \frac{\left\|\sum_{l=1}^{N_{d}} D_{j l} \Psi_{l}\right\|^{2}}{2}
$$

3D Tests:

- 3D example: mapping a uniform cube into the MRI of a human head

Euclidean embedding

- The objective is to approximate the metric space defined by Wasserstein distance by an euclidean space
- A set of snapshots:

$$
\begin{aligned}
& \int_{\Omega \subset R^{d}} \rho_{i} d x=1, \quad \forall i=0, \ldots, N_{s} . \\
& \mathcal{W}^{2}\left(\rho_{i}, \rho_{j}\right)=\inf _{\tilde{X}}\left\{\int_{\Omega} \rho_{i}(\xi)|\tilde{X}(\xi)-\xi|^{2} d \xi\right\}, \\
& \rho_{i}(\xi)=\rho_{j}(\tilde{X}(\xi)) \operatorname{det}\left(\nabla_{\xi} \tilde{X}\right) .
\end{aligned}
$$

- Wasserstein distance:
- Distance Matrix:

$$
\mathcal{D}_{i j}=\mathcal{W}^{2}\left(\rho_{i}, \rho_{j}\right)
$$

- An euclidean space is sought, such that the distances between its elements recover at best the matrix distance
- Embedding Matrix: $\quad B=-\frac{1}{2} J \mathcal{D} J \quad$ where: $\quad J=I-\frac{1}{N_{s}} \mathbb{1}^{T}$
- B is PSD $<=>D$ is a distance matrix. Then $B=X X^{\prime}$.

X is the matrix whose rows are the coordinates of the euclidean space elements

Ideal Vortex Scattering

(a)

(b)

(c)

- The dynamics is governed by an Hamiltonian system: three different trajectories are represented, varying the offset
- a) meeting;
- b) mating;
- c) weak interaction.

Ideal Vortex Scattering

- Spectra of the embedding matrix in the three cases:
- a)Two eigenvalues are significant;
- b) Two eigenvalues are significant;
- c) Only one eigenvalue is significant.

Ideal Vortex Scattering

- Eigenvectors in the three cases:

- a) Phase plot for meeting;
- b) Phase plot for mating;
- c) First eigenvector for the weak interaction.

Vortex Shedding

- The same analysis is performed in the case of a vortex shedding, for an incompressible flow around a confined circular cylinder
- Kinetic Energy is studied, which is almost satisfying normalization condition; 10 snapshots are taken on half a period of vortex shedding

- Spectrum of the embedding matrix and phase portait of the first two eigenvectors

Vortex Shedding

- The following test was performed:
- a) Three snapshots are taken: at $\mathrm{t}=0, \mathrm{t}=\mathrm{T} / 4, \mathrm{t}=\mathrm{T} / 2$, where T is the period
- b) The distribution that corresponds to the center of the circle is computed
- c) The flow is recovered mapping the center distribution in the snapsnots:

$$
\Phi(t)=\cos (2 \pi t) \phi_{1}+\sin (2 \pi t) \phi_{2}
$$

- Center Distribution: it is not a physical configuration!

Vortex Shedding

- Contours of first and second mappings:

- Representation of the kinetic energy of the flow:

Best ($\mathrm{t}=0$)

- Worst ($\mathrm{t}=\mathrm{T} / 8$)

Euclidean embedding

- Korteweg-de Vries equation with diffusion
- $\partial_{t} u+\mu \partial_{x}^{3} u+2 u \partial_{x} u-\nu \partial_{x}^{2} u=0$
- Standard POD modal approximation
- Transport approximation + POD modal approximation of the residual

Euclidean embedding

