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® Discrete instantaneous velocity expanded in terms of empirical eingenmodes:

u(a, t) = w(@) + 357, an(t) ¢, (@)
where u(x) is a reference velocity field.

Eigenmodes ¢,, (x) are found by proper orthogonal decomposition (POD) using the
“snapshots method” of Sirovich (1987).

Limited number of POD modes, N, is used in the representation of velocity fields
(snapshots) — they are the modes giving the main contribution to the flow energy.

Galerkin projection of the Navier-Stokes equations over the retained POD modes
leading to the low-order model:

ar(t) = Ar 4+ Crrar(t) — Brsrag(t)as(t)

ar(0) = (u(z,0) — u(x), ¢,)
Coefficient By, derives directly from the Galerkin projection of the non-linear terms in
the Navier-Stokes equations




Tumor growth modeling

® PDE models: they are all parametric models

® Parameters take into account microscopic and
mesoscopic scales phenomena that we do not model
directly

® As consequence, parameters do not have a biological
meaning and can not be measured; they need to be
identified.




Inverse problems

® |dentification:

<

0.Y (x; t) = f(Y,(P, 1)
Im; =Im(Xx; t;)

Ei= Im; -Y(X; ti)

The model describes the evolution: non-
observables and parameters to be determined!

The data: in general, medical images

> We want to minimize the error beween

the simulated history and measurements




The model

a—P—I—V°(VP):(27—1)1[’

5 Proliferating cells density

% v Q) = (1P

5 Dead cells density

V- (kVI) = —P Saturation, “mitosis equation”

v = —kVII Mechanical closure

-V - (DVC) = —aPC - \C Nutrient equation

k = ]{1 —+ (kg — kl)(P -+ Q), POI’OSit)’

D =D — K(P+ Q)

B 1+ tanh(R(C — Chyp))
N 2

Y= P+Q

Diffusivity

A
A
A
A
A
A
A
A

Hypoxia function

Y




Inverse problems:

|)_Reduced approach: compute a database of solutions,
extract “important” structures and minimize residuals

Compute a Extract coherent
database, varying |——{ structures by means Inject informations in

both P, 11 of POD the model:
|) Equations are

v satisfied
2) The model fits at
best the data

Offline stage: you
do it once

0Y = f(Y,P,n); (m;,P)=argmin{» || f(Im; P,7)— 0|}
P& =




Inverse problems:

® The POD expansions are sobstituted into the
equations written for the observableY

Vv (o) = o) ol

AV - (¢)) = a) 6]

E(Y)a;V A @) = VE(Y) A a) ¢

aCof — afV - (K(Y)V¢C) = —aalal ¢ ¢} — Aaf ¢¢
2a2pgbzp — 1 + tanh(R(al ¢¢ — Chyp))

® Unknowns:

® ky/k1, Dias, K, a, A, Cpyy ——> Parameters

P C P Expansion Coefficients:

® a .a .a;,a; — : i
ALY functions of time only




Inverse problems:

In the equation for the observable the time derivative
dY/dt is unknown

To solve the problem the time derivative is
approximated by interpolation

Several type of interpolation have been tested:
@ Linear: Y =tA+(1-t)B

® Exponential: Y = Aexp{(t} + Bexp{—(t} = f(¢)

@ LogiStiC: Y ~ AG(W, O-) + BG<_W7 _0)




Inverse problems:

® Solution of the non-linear system written at the time t,
whenY is observed: minimization of the residual

(az(-)(to)’ wj) = argmin {F} = argmin {Z RZQ}

® Residual is minimized using a Newton solver
(Levemberg-Marquardt).

Condition on the variable P are imposed via a
penalisation techinque.

Reaction-Diffusion equation for the oxygen is critical
since the variable is not observed, but entirely
regularized.




Inverse problems:

2) Sensitivity: minimization of the error with respect to
parameters and non-observed quantities.

l see what !:he effect
of changing
parameters is;
update parameters.

Set Po, TTo [—>{ compute E;

Yes

Bz = ZEE = Z/Q([mz —Y(z:t;))” dx

OE7 _ Z/ A Yz Sensitivity: quantifies changes in the solution for

or;

\om; a small perturbation of the j-th parameter




Slow growth nodule

Metastatic nodules in lungs: slow dynamics
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® Given two, or three images, can we recover the
following scans?




Slow growth nodule

e Computational set up:

¢ Finite Volume schemes on cartesian mesh;

* WENO 5 scheme for transport;
 RK2 scheme for time discretization;

< Level set methods;

< Resolution: 200 x 200, domain [0,8]x[0,8]
¢ Time: 2 min on one CPU

® Control set:

<© Parameters + Initial Condition for P

< P is supposed to be an external layer: Po =A exp(-0¢?)




Slow growth nodule

Tumor density distribution. Active part of the tumor

Isocontours of nutrients




Slow growth nodule

Fig. 12. POD modes for the oxygen field, Case I: a) First mode, b) Third mode c) Fith mode.




Slow growth nodule

Distribution of radio-resistant
Volume curve: cells:

~__ guiesc
Q.Q3‘1~-@24




Slow growth nodule

® Reduced model:

POD expansion:
* Np=15Nc=5Nv=10;Ngp =15

Volume curve:

x 107
12

ROM

o sems | i Comparison between sensitivity

T Sensitivity | - (blue) and ROM (black); at the
N a beginning they have the same
behavior

months




Slow growth nodule

Simulation:

Error is essentially a shape error:

Error
0.69839

0.5
0.25

0

025

--05
-0.549006




Two nodules case
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How far we can represent a PDE solution by POD !

1 - Probleme base POD, ®,(x) : mauvaise représentation écoulements 3D turbulents
hors base de données
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o Problemes contrdle écoulements 3D turbulents

o Propriétés de turbulence érronées (spectre, etc)




Coherence by optimal mass transport

How to displace a certain amount of mass in such a way that a
cost functional is minimized?

XE) .

QX Q

X(€) =arg min{C(X())}

* Histoire de ’Academie de Science de Paris: “Mémoire sur la théorie des déblais remblais”




Mathematical formulation

® (&) pi(x) are two density distributions such that:

A / po(§) d€ = / p1(x) de =1 mass is conserved
Qo ol

A det (VeX)p1(X(E)) = po(é) if and only if X is one-to-one

® [nfinitely many X exists. Among them we look for the
optimal one:

A | w©IX©) €l de < [ (&)X (€) €] de




Mathematical formulation

e [Iheorem:the solution of this problem exists unique,
and has this form:
X7(€) = Ve V(¢
where the potential is a convex function (a.e.)

® This problem can be formulated as the minimum of an
action:

1 T
J=o || o )U 7)) dedr
2Jo JRd

® Enforcing mass conservation dp+ V.- (pU) =0
by means of a lagrangian multiplier lead to:

U1
2




Key Properties

op+ V- (pU) =0 mass conservation

VP
2

U=V flow is irrotational

0- Y + 0 H-J equation for the potential

time conditions:
p(x,0) = po(x)
p(ﬂ?,T) — p1<.f13')

Time conditions concerns the
density only.

+ B.C. for the potential

® This is a presureless (infinitely compressible) Euler flow

® Since o.U+(U-V)U=0 information is propagated along rays

@ Difficult to integrate: two time conditions for the density
and no initial neither final condition for the potential




A Lagrangian scheme:

e Information moves along straight lines: Transport PDE has a

simple lagrangian solution.

A set of particles is defined
such that:

A | o) de=1

@ Lagrangian mass formulation: mass conservation is strongly imposed:

N

q p

A —/ pdr =0 plx,7) =3 c(t)olz—X;(r))
dt Q(1) j=1

d
el | 8-c.(1) =0
dr L(T) P : Cj( )

® The solution of the H-|] equation, once the initial condition is set, reduces to:

Xi(r)=&§+ V(&) T




A Lagrangian scheme:

@ Initial and final conditions have to be imposed: the problem reduces to
an algebraic optimization problem.

A Initial condition:

- {n;;n > [pm, 0) == d; alr - Xj<o>>] }

7o k=1

A Final Condition:

o)

@ A regularization is added in order to speed up convergence:

D ¥y||?
2

on | o
E(U) = E(T) + 8 Y =
J




3D Tests:

@ 3D example: mapping a uniform cube into the MRI of a human head

Residual Residual
0.086257 0.061662

£0.04
0

-0.04

-0.00449
-0.06759




Euclidean embedding

@ [Ihe objective is to approximate the metric space defined by Wasserstein
distance_by an euclidean space

@ A set of snapshots: pide =1 Vi=0,..., N,
QCRA

@ Wasserstein distance: W?(pi, pj) = i§f {/Qpi(fﬂjf(f) — & df} ,
pi(€) = pi(X(€)) det(VeX).

@ Distance Matrix: D;; = WQ(/%, 0j)

® An euclidean space is sought, such that the distances between its elements
recover at best the matrix distance

1
@ Embedding Matrix: B = —%JDJ where: J=1-— FMT
O B is PSD <=> D is a distance matrix. Then B=X X.

X is the matrix whose rows are the coordinates of the euclidean space elements




|deal Vortex Scattering

@® The dynamics is governed by an Hamiltonian system: three different
trajectories are represented, varying the offset

® 2a) meeting;
@ b) mating;

@ ) weak interaction.




|deal Vortex Scattering

[0} [0}
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= =
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L L

Eigenvalue

@ Spectra of the embedding matrix in the three cases:
® 2a)Iwo eigenvalues are significant;

® b) Two eigenvalues are significant;

® c) Only one eigenvalue is significant.




|deal Vortex Scattering

@® Eigenvectors in the three cases:

@ 2a) Phase plot for meeting;
@ b) Phase plot for mating;

@ c¢) First eigenvector for the weak interaction.




Vortex Shedding

@® The same analysis is performed in the case of a vortex shedding, for an
incompressible flow around a confined circular cylinder

Kinetic Energy is studied, which is almost satisfying normalization condition;

¢ |0 snapshots are taken on half a period of vortex shedding

Eigenvalues
-
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@® Spectrum of the embedding matrix and phase portait of the first two eigenvectors




Vortex Shedding

@® The following test was performed:

@ a) Three snapshots are taken: at t=0, t=T/4, t=T/2, where T is the period

@ b) The distribution that corresponds to the center of the circle is computed

@ c) The flow is recovered mapping the center distribution in the snapsnots:

O(t) = cos(2mt)py + sin(27t)po

@ Center Distribution:
it is not a physical
configuration!




Vortex Shedding

@® Contours of first and second mappings:

@ Best (t=0) ® Worst (t=T/8)




Euclidean embedding

® Korteweg-de Vries equation with diffusion

o Ou+pdiu+2udu—vdiu=0

® Standard POD modal approximation

®  Transport approximation + POD modal approximation of the residual




Euclidean embedding




Euclidean embedding




Euclidean embedding

Solution




Euclidean embedding

Solution




Euclidean embedding

Solution




