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Elementary Motivation 
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 All floating point numbers are afflicted with uncertainties
 ‘true valuesʼ are not known exactly 

–  Measurements    values are uncertain 
             due to non-perfect instruments, intrinsic randomness, … 

–  Simulation           results are uncertain 
             due to uncertain parameters, inaccurate models, 
             inaccurate numerics, rounding errors 

�Strictly spoken:�

(fortunately: error bounds are often implicitly available by foreknowledge ) 

Numbers are Uncertain 

Numbers�
without indication of error bars or even PDF 

are worthless ! 
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•  Physical view�
–  Quantitative science�

–  No numbers without errors; some variables are random / considered as …�

–  Uncertainties need to be specified�

•  Biological view�

–  Huge variability of biological systems�

–  Large variability of biological states�

–  Regulation: intervals instead numbers�

–  Many relevant variables are inaccessible�

•  Technical view�
–  Measurements are riddled with error�

Example: Uncertainties in Biomedicine 
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•  Patient: a human with a severe problem; 
his/her future well-being depends on you�

•  You have a highly responsible task�

•  You have to infer information from images,
take decisions and perform actions�

•  You have to rely on
�data acquisition
�data processing
�data visualization 

Imagine, you are a Surgeon ...  

Glioblastoma of the brain. 
Displacement of nerves by the tumor. 
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All data with continuous range are affected by uncertainty.�

•  Conclusions have to be drawn from uncertain information�

•  This is the rule, not an exception�

•  Error estimation should be ubiquitous�

�Visualization tools should show

�-  which information is reliable

�-  which information is uncertain�

Uncertainty in Visualization (More General) 
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In data analysis we tend�
•  to reconstruct fine details at the resolution limit and at marginal SNRs�
•  to extract complex features at the information limit�
•  to depict untrustworthy information…�

Visualization methods should�
•  sense these limits�
•  discern which information is reliable / which not�
•  convey visually the degree of trustworthiness of information�

Data Analysis Point of View 
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•  Statistical graphics:
well developed�

•  Few 2D and 3D visualization 
methods exist�

•  However: most 2D and 3D 
visualization methods still
do not consider uncertainty� A. Pang, C. Wittenbrink,S. Lodha 

T. Hengl 

Previous Work (Few Samples ONLY) 

The Bigger Picture 
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Three Pillars of Science    Models 

Universe 
of 

Physical Realities 

Observations Theory /Mathematical 
Models 

Computational 
Models 

We form mental images of external objects 
and the form we give to them is such that the 
necessary consequences of the images in thought 
are always 
images of the necessary consequences in nature 
of the things pictured. 

H. Hertz, in: Principles of Mechanics (1894) 
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The Science Process:  Validation & Verification 

Knowledge 

Decisions 

Verification 

Validation 

Universe 
of 

Physical Realities 

Observations Theory /Mathematical 
Models 

Computational 
Models 
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•  David Hume (1711 – 1776) 

–  Problem of induction: theories can not be validated�

•  Karl Popper (1902 – 1994) 

–  Scientific theory can only be invalidated by contrary experimental 
evidence�

–  Experimental observations are intrinsically interwoven into the scientific 
method�

–  Scientific research is hypothesis-driven�

–  Principle of falsification: only such hypotheses are legitimate that could 
be refuted by experimental evidence�

Creation of Theory, Knowledge 
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Discretizationlllll       
Errors 

The Science Process: Cascade of Uncertainties 

Observational 
Errors 

Modeling 
Errors 

Knowledge 

Decisions 

Errors
Observational

Errors
Modeling

Errors Verification 

Validation 

Universe 
of 

Physical Realities 

Observations Theory /Mathematical 
Models 

Computational 
Models 
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Thomas Bayes’ (1702–1761) ideas re-emerge:�
•  Bayesian analysis of computational predictions: uncertainty arises from�

–  Model parameters m�

•  Begin with priori joint PDF ρM(m), describing what we know at the beginning�

•  Calibrate via Bayesian inference: update the PDF to make the theory (model) 
consistent with particular observations (data)�

–  Experimental observations d�

•  Observational data d also will have uncertainties; represent by PDF ρD(d)�

–  Theoretical model θ�

•  Consider theory θ as conditional probability distribution θ(d | m) (‚likelihoodʻ)
that maps the parameters m to a probability distribution of the outputs d�

Creation of Theory, Knowledge 
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•  Bayes’s theorem: Characterizes what is known about the
model parameters expressed as the posterior PDF σ(m | d)
of the parameters m conditioned on the data d�
� � ��
� � �σ (m | d) = �

•  Statistically infers the posterior distribution σ(  | d)
of parameters m that fit the theoretical model to the observations d�

•  Key to validation and – ultimately –
to prediction with quantifiable uncertainties.�

Creation of Theory, Knowledge 

ρM(m)  θ(d | m)  �
ρD(d)�
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Feature Extraction in Uncertain Data 
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Two fundamental cases:�

•  Visualization of »raw« data�

•  Visualization of »features«�

Data Visualization 
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Features = entities 

–  that can be computed from the input data �

–  that characterize certain aspects of the input data�

Example: features in fields 

Visualizing Uncertain »Features« 

� �Spatial Features � �Non-Spatial Features�

 Scalar �iso-surfaces � �min/max; histogram�

� �ridges � � �entropy � � ��

� �MS complex�

 Vector �critical points � �histogram on S2xR�

� �integral curves�

� �topological skeleton�

 Tensor �eigenvector field lines �tensor DF�
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•  Feature-based visualization�
–  Definition of feature�

–  Preprocessing of raw data:
�reconstruction, regularization �   error propagation�

–  Extraction of features � �   error propagation�

–  Display of features � � �  error propagation�

•  How to deal with uncertain features ? 

Visualizing Uncertain »Features« 



11 

21 

Questions:�

•  How do the errors propagate ?
What is the resulting spatial uncertainty ?�
–  Assume a sample grid.�

–  What is the probability of a level crossing in a given cell element ?
(edge, face, voxel, …)�

•  How to depict the spatial uncertainty ?�

Example: Uncertain Iso-Surfaces 

Iso-Contours in Uncertain Data 

�Positional Uncertainty of Iso-Contours: Condition Analysis
and Probabilistic Measures
Kai Pöthkow, Hans-Christian Hege
IEEE Trans Comp Graph Vis, 17:10, Oct 2011, pp. 1393-1406�

�Probabilistic Marching Cubes
Kai Pöthkow, Britta Weber, Hans-Christian Hege
Computer Graphics Forum, 30:3, May 2011, pp. 931-940
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Iso-Contours in Uncertain Data: Previous Work 
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Grigoryan & Rheingans: 
Probabilistic Surfaces: Point Based 

Primitives to Show Surface 
Uncertainty, 

IEEE Trans Vis Comput Graph 10(5), 
pp. 564-573, 2004  

Zehner, Watanabe & Kolditz: 
Visualization of Gridded 

Scalar Data with Uncertainty 
in Geosciences, 

Comp. & Geosci 36(10), 
pp.1268-1275, 2010 

Previous Work 



13 

Iso-Contours in Uncertain Data: Questions 
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Iso-Surfaces in Noisy Data 
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Iso-Surfaces in Noisy Data 
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Iso-Surfaces in Noisy Data 
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Iso-Surfaces in Noisy Data 

! 
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Iso-Surfaces in Noisy Data 

!!! 
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Questions 

  How can we adequately model errors and uncertainty in 
scalar fields?�

  What is the resulting spatial uncertainty of iso-contours?�

32 

Questions 

  How can we adequately model errors and uncertainty
in scalar fields?�

  What is the resulting spatial uncertainty of isocontours?�
  What is the impact of spatial correlation?�
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      black curves: iso-contours                                              ill defined  

      better: probability of iso-contour (color) 

Solution we aim for … 

g(x) + ε(x)

(g + ε)−1(ϑ)

≈ ϑ

Input�

Output�

Iso-Contours in Uncertain Data: Sensitivity Analysis 
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Problem:     from     compute  

Condition number         :  gives a measure of how sensitive  
         the solution of a problem is 
         to perturbations in the input data. 

        is the smallest number with 

Common simplification: linearization.   If     is differentiable then 

Sensitivity of Results to Changes in the Data   

      

       

  

  

perturbation 

κabs ≥ ‖ρ(x)−ρ(x+ε)‖
|ε|

κabs = ‖ρ′(x)‖

36 

How do iso-contours change if input data (scalar field   ) is changed ? 

Condition number of  iso-surface computation                      :   

Condition number can diverge  ! 

•           is the amplification factor for absolute errors 

•  No surprise: only for regular values is              a smooth d-1 manifold 

•  For iso-contour algorithms      needs to be a Morse function 

•  But even if       is a Morse function: problems occur for  

Error Amplification 

        

g−1(ϑ) = x

κabs =
1

‖∇g(x)‖

g−1(ϑ)

g

g

g

‖∇g‖ � 0
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Iso-surface 

Sensitivity of a Iso-Surface to Changes in the Data 

       If errors in the input data are unknown: 

    Condition number can give a hint where extracted feature might be uncertain  
             due amplification of errors in the input data 

Density of fuel during an injection process             (data from www.volvis.org)  

Iso-surface, color: condition number 
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Selection of Well-Conditioned Iso-Surfaces 
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Selection of Well-Conditioned Iso-Surfaces 

•  Simulated flow around an airfoil (single timestep) 

•  Q field (Okubo-Weiss parameter) 
Q≈0 separates regions of dominant strain and vorticity  

•  Average condition numbers of iso-surfaces 

  Q≈0 most ill-conditioned iso-surface 
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Selection of Well-Conditioned Iso-Surfaces 
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Iso-Contours in Uncertain Data:  Random Field Model 
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•  Scalar field                      on compact domain�

•  Consider level sets �

•  Discretely sampled on nodes              with values�

•  Let              be random variables �

�  distributions�

�  means          �

�  variances�

�  co-variances�

•  True values of field         unknown;  assume: �

Uncertain Iso-contours 

g :M → R M ⊂ R
d

{x}i∈I {Y }i∈I

{x ∈ M |x = g−1(ϑ)}

{Y }i∈I

μi = E(Yi)

σ2
i = E(Yi − μi)

2

Cov(Yi, Yj) = E((Yi − μi)(Yj − μj))

fi

g(xi) = μig(x)
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Discrete random field  = multivariate Gaussian RV�

Gaussian Random Field 
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Discrete random field  = multivariate Gaussian RV�

Gaussian Random Field 

Σ = [Cov(Yi, Yj)]i=1,2,...,n;j=1,2,...,n.

Y(y) =
1

(2π)n/2 det(Σ)1/2
exp

(
− 1

2 (y − μ)TΣ−1(y − μ)
)

Y ∼ Nn(μ, Σ)
μ = [E(Y1),E(Y2), . . . ,E(Yn)]
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Gaussian Random Field 
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Marginalization:�

where      is the reduced random vector and           and    
are the quantities                                                     and
with               columns/rows deleted
that correspond to the marginalized variables  �

Gaussian Random Field 

∫ ∞

−∞
dym+1 . . .

∫ ∞

−∞
dyn

1

(2π)n/2 det(Σ)1/2
exp

(
− 1

2 (y− μ)TΣ−1(y − μ)
)

=
1

(2π)m/2 det(Σ̃)1/2
exp

(
− 1

2 (ỹ − μ̃)T Σ̃−1(ỹ − μ̃)
)

=: fỸ(y1, . . . , ym)

Ỹ ỹ, μ̃ Σ̃

y, μ Σ

n−m

ym+1 . . . yn
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Gaussian Random Field 

   Complete 
random 

field 

Local 
marginal 

distribution 
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Constrain               RV        to subsets      .�

Re-order RV such that constrained ones are the first       ones.�

Probability of constrained realization:�

For Gaussian distribution:�

Probabilities of Classes of Realizations 

m ≤ n Yi Si

m

Prob (Y1 ∈ S1, . . . , Ym ∈ Sm) =

∫

S1

dy1 . . .

∫

Sm

dym

∫

R

dym+1 . . .

∫

R

dyn fY(y1, . . . , yn)

∫

S1

dy1 . . .

∫

Sm

dym fỸ(y1, . . . , ym)
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Iso-Contours in Uncertain Data: Level-Crossing Probabilities 
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Assume        interpolant      for any realization (= grid function)�
which takes its extreme values at the sample points. �

Consider grid cell     with indices          . �

Cell     crosses    -level of          if and only if�
not all differences                       have the same sign.�

Level crossing probability                                : �
Integrate              over sets                              and�

Alternatively:    �

Level Crossing Probabilities 

C0

c Ĩ ∈ I

c ϑ g{y}

g

(yi − ϑ)i∈Ĩ

Probc(ϑ-crossing)

{Y }i∈Ĩ {yi ∈ R | yi ≤ ϑ}{yj ∈ R | yj ≥ ϑ}
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Level Crossing Probabilities on Edges 

52 

Edge with bivariate Gaussian RV�

Level Crossing Probabilities on Edges 

Y = [Y1, Y2]

= Prob(Y1 ≤ ϑ, Y2 > ϑ) + Prob(Y1 > ϑ, Y2 ≤ ϑ)

Probc(ϑ-crossing) =

=

∫

y1≤ϑ

dy1

∫

y2>ϑ

dy2 fY(y1, y2) +

∫

y1>ϑ

dy1

∫

y2≤ϑ

dy2 fY(y1, y2)
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Level Crossing Probabilities on Faces 

�4 Cases
(after Symmetry 
Reduction)         

Corresponding 
Integrals�
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Types of integrals �    symmetry-reduced Marching cubes cases.�

In 2D: 4 distinct cases (1 non-crossing, 3 crossing) �

In 3D: 15 distinct cases (1 non-crossing, 14 crossing)�
In 4D: 223 distinct cases (1 non-crossing, 222 crossing)�

In nD: use Polyaʼs counting theory�

Level Crossing Probabilities on Rectangular Cells, … 

�
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# of cases (i.e. integrals) with level crossings grows with dimension … 

Better exploit�

� � � � �only 2 cases without level crossings�
� � � �          only 2 integrals for all dimensions !�

�       e.g. for square cells in 2D:�

But dimension of integrals still  =  # vertices of geometric object !�

Level Crossing Probabilities – Simplified 

Probc(ϑ-crossing) = 1− Probc(ϑ-non-crossing)

Iso-Contours in Uncertain Data: Algorithm & Implementation 



29 

57 

Algorithm & Implementation 

  Preprocessing 

  Estimate       for all sample points 
  Estimate              for all 2- or 3-cells 

  For a given iso-value 
  Estimate crossing probabilities using 

Monte Carlo integration 
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Level Crossing Probabilities on Faces 
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Monte Carlo Step 
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Monte Carlo Step 
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Monte Carlo Step 
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Monte Carlo Step 
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Monte Carlo Step 
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Monte Carlo Step 
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Monte Carlo Step 
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Monte Carlo Step 
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Algorithm & Implementation 

Iso-Contours in Uncertain Data: Results 
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Impact of Spatial Correlations  

   ϱ=0.65     ϱ=0.95 

   ϱ=0.00 

synthetic data 
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Climate Simulation 

Data courtesy of 
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Isotherm of Climate Simulation 

spatial�
correlations�
considered�

not considered�
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Fuel Injection Data Set + Artificial Noise: Uncertain Level Set 
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Fuel Injection Data Set + Artificial Noise: Uncertain Level Set 

74 

Fuel Injection Data Set + Artificial Noise: Uncertain Level Set 
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Application Example: Isotherm of Climate Simulation 

spatial correlations not considered�

76 

Application Example: Isotherm of Climate Simulation 

spatial correlations considered�
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Roads to Sharp Formulations − Future of Uncertainty Vis 
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•  Types of uncertainty�
–  Aleatoric�

–  Epistemic�

•  Uncertainty representations�
–  Intervals � � � �    interval computing�

–  Fuzzy numbers, sets � �  soft computing�

–  Probabilities, PDFs� � �  probability theory, statistics�

•  Reasoning under uncertainty, decision support 

–  Formal reasoning � � �  statistical inference  
         uncertainty in AI 

–  Defuzzification, decision taking �  risk & decision theory�

We need to understand … 

experimenter:   results differ, each time she/he runs an experiment 
modeller:          does not foresee the possibility to reduce uncertainty 

experimenter:   we could in principle know, but don’t know in practice 
modeller:          sees the possibility to reduce uncertainty by 

       gathering more data or be refining models 
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Uncertainty quantification in modelling and simulation � � 

•  Estimate parameter uncertainty�

•  Develop statistical / fuzzy models�

•  Analyse uncertainty propagation�

•  Perform sensitivity analysis and dimensional reduction�

•  Develop methods for defuzzification�

•  Develop tools to support in decision making�

We need to understand and further develop … 
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Uncertainty Visualization 

•  UQ in the visualization pipeline �

•  Fuzzy analogues of crisp features, uncertainty of features�

•  Visual mapping of uncertain data and fuzzy features�

•  Evaluation of uncertainty representations (perception, cognition)�

•  Visual support for data processing techniques:
� �        data aggregation, ensemble analysis, …�

•  Visual support of defuzzification�

•  Visual support in decision making�

•  Evaluation of uncertainty VIS / VA systems�

We need to understand and further develop … 
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•  Major tasks in uncertainty visualization 

–  Uncertainty quantification in visualization pipeline 

–  Visual mapping of uncertain data and fuzzy features 

–  Support in decision making 

•  Uncertain features 

–  Condition numbers, sensitivity analysis 

–  Probabilistic formulation 

Conclusion 
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•  Uncertain iso-surfaces 

–  reveal information not visible before 

•  Assumption of certain distribution law 

–  arbitrary number of realizations possible 

–  more details than with limited number of realizations 

•  Advantage of not computing crisp iso-surfaces: 

–  no regularity requirements (Morse, non-Morse) 

–  no special cases in algorithm for degenerate cases 

•  Most important research questions: 

–  visual mapping 

–  non-Gaussian random fields 

Conclusion 
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Thank you very much for your attention ! 

More information: 
www.zib.de/visual 
MMMMMMMoMoMoMoMMoMoMoMoMMoMoMMoMooMMMMoooooorrrerereererreeeeeeeee iiii iinfnfffnfnnffnnfnnnfoooororrrmmmmamaamaamamm ttiiitt oooonnnooo ::
wwwwwwwwwwwwwwwwwwwwwwwwwwww wwwww.w.ww.www zziziibbb..bb.dedeeede///vv///v///viisississssssssuauauauaalllllllVisualization and 

Data Analysis 

www.zib.de/visual 


